
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Third Party Copy Protocol 

TPC Version 1.0 

Reference 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

21-October-2016 

Andrew Hanushevsky 

  



ii 21-October-2016  TPC Protocol 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

©2003-2016 by the Board of Trustees of the Leland Stanford, Jr., University 
All Rights Reserved 

Produced under contract DE-AC02-76-SFO0515 with the Department of Energy 
This code is available under an LGPL license. 

 



Third Party Copy Protocol  Contents   

TPC Protocol 21-October-2016 iii 

1 Introduction ............................................................................ 5 

2 Client Performing a TPC Transfer ..................................... 6 

2.1 Determine if TPC is Supported .................................................... 7 

2.2 Client Preparatory Source Open .................................................. 7 

2.3 Client Destination Open ................................................................ 9 

2.4 Client TPC Initiation .................................................................... 10 

2.5 Client Source Open ...................................................................... 11 

2.6 Client Wait for Completion ........................................................ 12 

2.7 Client Closes Files ........................................................................ 12 

3 Destination Server Copying Source File......................... 13 

3.1 Rendezvous Completion ............................................................. 14 

3.2 Rendezvous Cancellation ............................................................ 14 

3.3 Third Party Copy Cancellation .................................................. 15 

4 Document Change History ................................................ 15 

 





  Third Party Copy Protocol   

TPC Protocol 21-October-2016 5 

1 Introduction 
 

This document describes XRootD’s Third Party Copy (TPC) protocol. This 

application layer protocol allows a third party client to initiate a copy of a file 

from one data server to another. The data does not flow through the client 

allowing for superior performance. This protocol is natively supported by the 

XRootD xrdcp data transfer utility. However, since it is implemented at the 

application layer it can be used by other protocols as well (e.g. HTTP). In 

discussing the protocol the following terminology is used: 

 

• Destination: the node that receives the file. 

• LFN: the logical file name at either the source or destination. 

• PFN: the physical file name at the destination. 

• Source: the node that provides the file. 

 

The TPC protocol is based on a rendezvous copy paradigm revolving around a 

client-supplied rendezvous key. In essence the client must be able to read the 

source file and create the destination file. If both are true then a rendezvous point 

is established at the source. This allows the destination to rendezvous with the 

source using the rendezvous key to transfer the file from the source to the 

destination. The transfer is a pull request that allows the destination to make sure 

sufficient resource exist to create the file. At the end of the transfer the client may 

also request that checksum verification occur to make sure the source and 

destination files are identical. 

 

While the CGI information is normally not encrypted unless the underlying 

protocol encrypts such information; the protocol is able to detect whether the 

CGI information was possibly stolen from the wire and is being inappropriately 

used. This requires that any servers participating in a TPC transfer be registered 

in DNS and use the same client authentication protocol, if any. 

  



Third Party Copy Protocol 

6 21-October-2016  TPC Protocol 

2 Client Performing a TPC Transfer 
The following steps should be performed to successfully execute a third party 

copy. Some steps are optional but when executed they assist in diagnostics and 

predictability. 

 

1. The client may determine whether or not TPC is supported by the source 

and destination servers. This provides early detection of whether a TPC 

transfer is even possible. This step is optional as non-support can be 

detected later in the protocol steps. See the section on how to determine if 

TPC is supported in XRootD protocol. 

2. The client should open the file at the source and obtain the file size and 

indicate that the source will be subject to TPC transfer. This step is 

optional but it may be used by the source in determining whether or not it 

supports TPC and, if so, prepare the file for transfer as needed. The file 

should be closed after this step completes. 

3. The client should open the file at the destination in the write-create mode 

and supply CGI elements to allow the destination to rendezvous with the 

source. The file should remain open until the transfer completes. 

4. The client should issue a sync() request against the open destination file. 

The sync() request should not return until the third party copy is initiated 

or fails to initiate. 

5. The client should open the source file in read-only mode and supply 

specific CGI elements to establish a rendezvous point in the source server. 

The file should remain open until the transfer completes. 

6. The client should issue another sync() request against the open destination 

file. The sync() request should not return until the third party copy 

completes or fails. 

7. The client should close the source and destination files. 

 

The above steps are detailed in the same sequence in the following sections. 

  



  Third Party Copy Protocol   

TPC Protocol 21-October-2016 7 

2.1 Determine if TPC is Supported 

Various implementations may use different schemes to indicate whether or not 

TPC is supported. In XRootD this is done using the “query config TPC” request 

(i.e. kXR_query request code with the kXR_Qconfig flag set and an argument of 

“tpc”). If the response is a signed integer value it indicates that TPC is supported 

and the value is the protocol version number. If it is not supported, “tpc” is 

returned. 

 

This step is optional but allows you to determine whether the source and 

destination support TPC and avoid initiating a copy that is destined to fail. 

 

2.2 Client Preparatory Source Open 

The client may open the source file in read-only mode whose logical file name 

(i.e. lfn) is suffixed with a TPC CGI element shown below. 

 

  
 lfn?tpc.stage=placement 

 

 

The client may determine the file size at this point, though this can occur in the 

subsequent step. Certain servers may require advance notification that a TPC 

action will be performed on a file and this step allows for that. The file should be 

closed before initiating any subsequent steps. 

 

  





  Third Party Copy Protocol   

TPC Protocol 21-October-2016 9 

2.3 Client Destination Open 

The client should open the destination file in write-create mode whose logical file 

name (i.e. tlfn) is suffixed with TPC CGI elements shown below. 

 

  
 tlfn? tpc.src=hostname&tpc.key=token&tpc.stage=copy[opts] 
 

 opts: &tpc.cks={adler32 | crc32 | md5} 

 

  &tpc.lfn=slfn 

 

  &oss.asize=size 

 

 
Parameters 

tlfn Is the logical file name at the destination server that the copied file is to 

have. 

 

hostname  

 Is the fully qualified DNS name of the source server. This is the server 

that provides the file.  

 

token Is a client generated hexadecimal ASCII string that is to be used as the 

rendezvous point by the destination server.  The strings should be as 

unique as possible and may include information unique to the client. The 

string should be only as long as necessary to achieve relative uniqueness 

to the client, but no longer than 256 characters. 

 

opts Are optional CGI elements that must be used in certain circumstances, as 

described below. 

 

slfn Is the logical file name at the source server of the copied file to be copied. 

This element must be specified if the tlfn is not the same as the slfn. If not 

specified, the slfn is assumed to be the tlfn. It is always safe to specify this 

element. 

 
  



Third Party Copy Protocol 

10 21-October-2016  TPC Protocol 

adler32 | crc32 | md5  

 If specified, the destination server is to verify that the copied file has the 

same checksum as the source file using the specified checksum type. 

Otherwise, it is the client’s responsibility to perform this check if so 

desired.  

 

size If specified, the destination server should use this to determine if 

sufficient space is available and reserve the appropriate space. 

 

Notes 

1) Generally, encoding the full time-of-day value with the process ID and 

parent ID as a hexadecimal string will achieve relative uniqueness, as 

shown in the code snippet below. 
char TPCKey[25]; 

struct timeval  currentTime; 

struct timezone tz; 

gettimeofday( &currentTime, &tz ); 

int k1 = currentTime.tv_usec; 

int k2 = getpid() | (getppid() << 16); 

int k3 = currentTime.tv_sec; 

snprintf( TPCKey, 25, "%08x%08x%08x", k1, k2, k3 ); 

 

2.4 Client TPC Initiation 

The is initiated by issuing a sync() operation against the destination file. The 

sync() should not return until the copy operation has been initiated at the 

destination. Because a copy may require scheduling due to limited resources 

there may be a substantial delay before the copy actually starts. Note that at this 

point a rendezvous point has not been established at the source. However, any 

implementation should queue the destination open request for a reasonable 

amount of time to allow the client to establish a rendezvous point by opening the 

source file after the copy has been initiated. Initiating a copy request does not 

necessarily mean the destination has yet opened the file. It only means that the 

destination copy task has started or is about to start running. It is unpredictable 

at this point whether the client’s source open will arrive before or after the 

destination’s open for the same file.



  Third Party Copy Protocol   

TPC Protocol 21-October-2016 11 

2.5 Client Source Open 

After the previous sync() completes, the client should open the source file in 

read-only mode whose logical file name (i.e. slfn) is suffixed with TPC CGI 

elements shown below. 

 

  
 slfn? tpc.dst=hostname&tpc.key=token&tpc.stage=copy[opts] 

 

 opts: &tpc.ttl=sec 

 

 
Parameters 

slfn Is the logical file name at the source server to be copied. 

 

hostname  

 Is the fully qualified DNS name of the destination server. This is the 

server that copies the file.  

 

token Is a client generated hexadecimal ASCII string that was used during the 

required destination open in the previous step. 

 

opts Are optional CGI elements that must be used in certain circumstances, as 

described below. 

 

sec If specified, is the maximum amount of time the rendezvous point may 

remain valid. The destination server must rendezvous with the specified 

key within this time interval. If not specified, system defaults apply. A 

server may impose a limit for the maximum value and if exceeded use the 

imposed maximum. 

 

Notes 

1) Reasonable short ttl values should be used as it is likely that the 

destination server has already attempted or is about to attempt a source 

file open.  



Third Party Copy Protocol 

12 21-October-2016  TPC Protocol 

2.6 Client Wait for Completion 

The client should wait for completion by issuing a sync() request against the 

open destination file. The sync() should not return until after the copy completes 

or fails. The sync() should also delay its return until the checksum has been 

validated if the client requested checksum validation. 

2.7 Client Closes Files 

The copy at this point is finished and the client should close the source and 

destination files. 



  Third Party Copy Protocol   

TPC Protocol 21-October-2016 13 

3 Destination Server Copying Source File 
Once the copy has been initiated by the client at the destination server, the 

destination server should read-only open the source file (i.e. slfn) suffixed with 

TPC CGI elements shown below. 

 

  
 slfn? tpc.key=token&tpc.org=user@hostname&tpc.stage=copy 

 

 
Parameters 

slfn Is the logical file name at the source server that will be copied file. 

 

token Is a client generated rendezvous token supplied to the destination server. 

 

user@hostname  

 Is the client’s identification: 

 user is the client’s login identifier, followed by a dot, followed by the 

   client’s process ID at hostname (e.g. loginid.pid) 

 hostname is the fully qualified DNS name of the client’s host. 

 

Notes 

1) If the destination server attempts a TPC open and there is no rendezvous 

point the open should be delayed for a short amount of time to allow the 

client to establish the rendezvous point via a source open. If the client 

does not do so with this time window, the open should fail. 

2) A third party copy should not be initiated until after the client issues the 

first sync() request against the open destination file. If the copy cannot be 

started, the sync() should be delayed until the copy operation is launched. 

  



Third Party Copy Protocol 

14 21-October-2016  TPC Protocol 

3.1 Rendezvous Completion 

A source server should only complete a rendezvous requested by a destination 

server upon source file open when all of the following are true: 

 A rendezvous point has been established by the client. This may occur 

before or after the destination server opens the source file. 

 The destination’s hostname matches the TPC.dst value provided by the 

client. 

 The destination-provided TPC.key value matches TPC.key value 

provided by the client. 

 The destination-provided TPC.org value matches identification of the 

client that established the rendezvous point. 

 The slfn in the rendezvous point matches the slfn being opened by the 

destination server. 

 The client established rendezvous point has not exceeded it time to live 

value (ttl). 

If all of the above are true, the destination server may open the source file. 

Otherwise, the open should fail. 

 

3.2 Rendezvous Cancellation 

A rendezvous requested by a destination but not yet established by a client or 

one established by a client but not yet requested by a destination is considered 

pending. A pending rendezvous should be cancelled if any of the following 

events occur: 

 The time to live value (ttl) is exceeded. While client may request a specific 

ttl this value should be able to be constrained by the source server. 

Destination servers should not be allowed override a source server’s 

imposed ttl. 

 A client attempts to establish a new rendezvous point when matching one 

is already pending. The new rendezvous request should not be honored. 

 A destination server attempts to establish a new rendezvous point when a 

matching rendezvous point is already pending for the destination. The 

new rendezvous request should not be honored. 

  



  Third Party Copy Protocol   

TPC Protocol 21-October-2016 15 

3.3 Third Party Copy Cancellation 

A destination server may queue a client TPC request for any reason but typically 

so as not to exceed its resource limits. When a copy is pending it is considered 

cancellable under the same conditions as an in-progress copy described below. 

 

Once a destination server successfully rendezvous with a rendezvous point the 

source file is considered open and the copy is considered in-progress. An in-

progress copy cannot be cancelled by the source server except for server failure. 

The destination server should cancel an in-progress copy if any of the following 

events occur: 

 The client closes the destination file either via close() or a disconnect. 

 The client requests that the in-progress copy terminate. The mechanism 

used may vary by implementation. In XRootD in-progress termination is 

requested by an SFS_FCTL_SPEC1 fctl() operation against the open 

destination file with the argument of "ofs.TPC cancel". 

 

4 Document Change History 
 

29 Mar 2014 

 New Document. 

 

21 Oct 2016 

 Correct case used in cgi elements. 

 


