

Proxy Storage Services

(Caching, Non-Caching,

& Server-less Caching)

Configuration Reference

16 May 2019

Release 4.10.0 and above

Andrew Hanushevsky (SLAC)

Alja Mrak-Tadel (UCSD)

ii 16-May-2019 Configuration

©2003-2019 by the Board of Trustees of the Leland Stanford, Jr., University

All Rights Reserved

Produced under contract DE-AC02-76-SFO0515 with the Department of Energy
This code is open-sourced under a GNU Lesser General Public license.

For LGPL terms and conditions see http://www.gnu.org/licenses/

http://www.gnu.org/licenses/

Configuration Contents

Configuration 16-May-2019 iii

1 Introduction ... 5

1.1 Direct Mode Proxies .. 7

1.2 Forwarding Mode Proxies .. 7

1.2.1 Forwarding File Paths ... 8

1.2.2 Forwarding Object IDs .. 9

1.2.3 Security Considerations .. 10

1.3 Combination Mode Proxies ..10

1.4 Minimal Sample Configuration Files ..11

2 Automating Proxy Service Selection 13

3 Standard Proxy Service .. 15

3.1 Simple Proxy Server ...16

3.2 Proxy Cluster ..19

3.3 Proxy Server Directives ...22

4 Disk Caching Proxy .. 27

4.1 Configuration ..29

4.1.1 Disk Caching S3-type Objects .. 35

4.2 Disk Caching Proxy Clusters ..37

4.3 Handling Cache Overloads ..39

4.4 Direct Cache Access ...40

5 Memory Caching Proxy ... 41

5.1 Configuration ..41

6 POSIX Server-less Caching ... 45

6.1 Server-less Disk Caching ...46

6.2 Server-less Memory Caching..47

6.3 Esoteric Directives ..47

6.4 Defining Virtual Mount Points ..48

6.4.1 Examples ... 49

7 The netchk Utility ... 51

8 Document Change History ... 53

Proxy Configuration

Configuration 16-May-2019 5

xrd

(protocol driver)

xrootd

(protocol)

ofs

(filesystem plugin)

pss

(proxy storage plugin)

1 Introduction

This document describes XRootD configuration directives for the Proxy Storage

Service (pss) components.

Configuration directives for each component come from a configuration file. The

xrootd structure requires that all components read their directives from the same

configuration file. This is the configuration file specified when xrootd was started

(see the xrootd –c command line option). This is possible because each component is

identified by a unique 3-letter prefix. This allows a common configuration file to be

used for the whole system.

The particular components that need to be configured are

the file system plug-in (ofs) and the proxy storage plug-in

(pss). The relationship between xrootd and the plug-ins is

shown on the left. The protocol driver (xrd) runs the xroot

protocol which, in turn, utilizes the file system plug-in that,

itself, relies on the proxy system plug-in. Collectively, this is

called xrootd, the executable that encapsulates all of the

components.

The prefixes documented in this manual are listed in the following table. The all

prefix is used in instances where a directive applies to more than one component.

Records that do not start with a recognized identifier are ignored. This includes blank

record and comment lines (i.e., lines starting with a pound sign, #).

Prefix Component
ofs Open File System coordinating acc, cms, oss & pss components
pfc Proxy File Cache (i.e. specialized proxy plug-in)
pss Proxy System Service (i.e., specialized oss plug-in)
all Applies the directive to the above components.

Refer to the manual “Configuration File Syntax” on how to specify and use

conditional directives and set variables. These features are indispensable for

complex configuration files usually encountered in large installations.

By default, all special features are disabled. A progression of directives enables

certain features. Features are enabled as described in the following table.

Configuration Proxy

6 16-May-2019 Configuration

Directive Purpose
ofs.osslib Load the shared library implementing a special pss

(storage system) component.

When you are not running a clustered set of proxy servers, you need to specify the

ofs.osslib directive. The plug-in is encapsulated in libXrdPss.so and is installed in

the standard location. If you are clustering proxy servers (i.e. you specified the

all.role directive indicating you are clustering proxies, libXrdPss.so is automatically

loaded as the ofs.osslib plug-in.

To properly configure an xrootd proxy you need to review xrd, xrootd, and ofs

directives and specify the ones that are relevant to your installation. The xrd and

xrootd directives can be found in the “Xrd/XRootd Configuration Reference” while

the ofs directives can be found in the “Open File System & Open Storage System

Configuration Reference”. If you are configuring a proxy cluster then you will need

to specify certain cms directives. These can be found in the “Cluster Management

Service Configuration Reference”.

The following section describes the standard proxy service. This proxy service is

primarily intended to be used for LAN access to bridge firewalls for remote clients.

While it includes a memory caching component that can improve performance for

WAN access in limited scenarios, it is not intended to be used as a true WAN proxy.

In a subsequent section the disk caching proxy is described. This proxy variant is

intended to improve WAN access as it is able to cache files or parts of files on disk at

a remote location. Caching files or file segments may minimize WAN traffic

depending on the specific workload.

Hence, the standard proxy service is intended to be used as a local proxy while the

disk caching proxy is intended to be used as a remote proxy.

A proxy service, whether or not it is a disk caching proxy, can be configured in

direct mode or forwarding mode. In direct mode the client is limited to initially

contacting a particular endpoint. In forwarding mode, the client is free to specify the

actual endpoint that is to be used for the initial contact.

Proxy Configuration

Configuration 16-May-2019 7

1.1 Direct Mode Proxies

Direct mode proxies are the most common kind of proxies and are suitable to

directly fronting an XRootD cluster. The pss.origin directive specifies the initial

point of contact. The following diagram illustrates a direct mode proxy.

In the diagram the client present a URL that identifies the proxy server or proxy

cluster. The proxy then contacts the data origin, a particular endpoint, on behalf of

the client and performs the requested operation. The endpoint can be an actual

server or a cluster redirector. This mode is suitable for incoming connections to a fire

walled cluster or outgoing connections to a particular data source.

Direct mode proxies can access files (i.e. paths that start with a slash) or data object

(i.e. identifiers that do not start with a slash) depending on the specified all.export

directives. See the “Xrd/XRootd Configuration Reference” for more information.

1.2 Forwarding Mode Proxies

Forwarding mode proxies are specialized proxies that allow the client to specify the

actual endpoint to be used for a request and suitable in cases where the client

determines the actual endpoint that must be used. The pss.origin directive specifies

that the endpoint will be supplied by the client, as shown below.

Configuration Proxy

8 16-May-2019 Configuration

In the diagram the client prefixes the destination URL with the proxy location. The

proxy server then contacts the specified endpoint on behalf of the client. The client is

free to specify any valid endpoint. This mode is most suitable for outgoing

connections and poses certain security issues that are described in a subsequent

section. A valid destination URL must specify the xroot or root protocol element.

1.2.1 Forwarding File Paths

When configuring a forwarding proxy you should realize that from the proxy’s

perspective the URL suffix supplied by the client is initially taken as an actual path.

This means that you

a) must export at least some portion of the URL suffix, and

b) can perform authorization operations on the specified URL (see the

“Security Configuration Reference” for more information).

Exports of the form

all.export /xroot:/ options

all.export /root:/ options

satisfy the export requirement (see the OFS reference manual for a description of the

all.export directive). You can specify longer export names in order to restrict the

endpoints that can be contacted using the forwarding proxy. However, since

multiple slashes are compressed before comparing the URL against the exported

path list, you must not specify successive slashes. For example, say you wanted to

restrict forwarding to only the host foobar:1094, then the exports would be specified

as

all.export /xroot:/foobar:1094/

all.export /root:/foobar:1094/

Even though the client would actually suffix “/xroot://foobar:1094/” to the proxy’s

URL location. The same applies to entries placed in the authorization file. All double

slashes must be removed in order for authorization rules to be matched. In both

cases, the client’s destination must exactly match the export specification. As a side

note, error messages in the proxy’s log file will show URL portions of the path

without multiple slashes and should not cause any alarm.

A better alternative is to use the pss.permit directive to restrict the set of target

destinations. This allows client to specify the target host in a variety of syntactic

ways since the permit applies to the actual resolved destination IP address. In this

case you only need to export the protocol segment of the destination URL.

Proxy Configuration

Configuration 16-May-2019 9

1.2.2 Forwarding Object IDs

To exporting object IDs (i.e. object names without a leading slash) via a forwarding

proxy, the configuration file must contain one of the following two export directives:

all.export *

or all.export *?

See the “Xrd/XRootD Configuration Reference” for more information on using

object IDs. Since object IDs do not start with a slash; hence, cannot be confused with

a file path, the specified client destination URL must appear like an object ID (i.e. it

may not start with a slash). Using an absolute file path URL to forward an object ID

converts the object ID to a file path and access will likely fail.

Additionally, you can neither use the authorization framework nor the all.export

directive to restrict forwarding by destination. Instead you must use the pss.permit

directive. This is because object IDs are arbitrary and are only recognized as such in

certain restricted contexts.

The following table compares forwarding an absolute path to an Object ID to a

server named “foobar:4096” via “myproxy:1094” (notice the missing double slashes

for myobject before the second “xroot” and the pathname, myobject).

Access Target Client URL Specification

/my/data xroot://myproxy:1094//xroot://foobar:4096//my/data

myobject xroot://myproxy:1094/xroot://foobar:4096/myobject

A forwarding proxy server is capable of accepting file paths as well as object IDs as

long as the correct exports are specified.

Configuration Proxy

10 16-May-2019 Configuration

1.2.3 Security Considerations

Proxy servers never forward client credentials to the endpoint that they contact.

Instead, they use their own credentials to establish authenticity. This works well for

incoming connections as the proxy can validate the client before performing any

actions on behalf of the client. However, outgoing connections pose a problem;

especially for forwarding proxies which are meant to be used for outgoing

connections. Validating a client using internal site rules does not necessarily capture

any specific access restrictions in effect outside the site. For instance, a site may

authorize an outgoing client but that client may not be actually authorized by the

final endpoint. If the proxy itself is authorized by the final endpoint then, in effect,

the client gets access to resources that would otherwise be prohibited if the client

made direct contact with the outside endpoint. Consequently, great care must be

given when providing resources using a forwarding proxy.

1.3 Combination Mode Proxies

A proxy server can be configured in direct more as well as forwarding mode. This is

known as a combination mode proxy and is done via a special form of the pss.origin

directive. For instance, specifying

pss.orgin = host:port

Allows a client to forward a connection via a URL type of path or connect to a

particular destination (i.e. host:port) if the path is not a URL. The exports must allow

such combinations. For instance, the trio of

all.export /xroot:/ options

all.export /root:/ options

all.export /atlas options

indicates that xroot: and root: URLs should forward the request to the client-

specified destination while paths starting with “/atlas” connect to the destination

specified in the pss.origin directive.

In practice, if it is sufficient for the destination host to enforce its exports the whole

specification can collapse to a single specification

all.export / options

as the proxy recognizes a URL if it begins with “xrootd:/” or “root:/” and treats

anything else as a regular path.

Proxy Configuration

Configuration 16-May-2019 11

1.4 Minimal Sample Configuration Files

Specify that we are a direct mode proxy fronting the host

data.stanford.edu (server or redirector)

pss.origin data.stanford.edu

The export allows access to any path via proxy as the

origin host will enforce its own exports

all.export /

We need to load the proxy plugin for this to actually work

ofs.osslib libXrdPss.so

Minimal Direct Mode Proxy Configuration

Specify that we are a forwarding proxy

pss.origin =

The export allows xroot and root type URL’s destinations

all.export /xroot:/

all.export /root:/

We need to load the proxy plugin for this to actually work

ofs.osslib libXrdPss.so

Minimal Forwarding Mode Proxy Configuration

Configuration Proxy

12 16-May-2019 Configuration

Specify that we are a forwarding proxy for URL type of paths

and a direct mode proxy for any other type of path

pss.origin = data.stanford.edu

The export allows any path to be specified. However, paths

starting with “/xroot:/” or “/root:/” are treated as URLs

and are forwarded. Anything else is accessed via

data.stanford.edu

all.export /

We need to load the proxy plugin for this to actually work

ofs.osslib libXrdPss.so

Minimal Combination Mode Proxy Configuration

Proxy Service Configuration

Configuration 16-May-2019 13

2 Automating Proxy Service Selection

One of the biggest challenges to force clients to use a proxy server without requiring

users to change the URL’s they normally would use. The XRootD framework allows

you to use an XRootD client plug-in to accomplish this in a transparent way.

A supplied XRootD client plug-in, libXrdClProxyPlugin.so, can be used to tunnel

traffic through an XRootD proxy server. The proxy endpoint is specified via the

environment variable XROOT_PROXY. To enable this plug-in the environment

variable XRD_PLUGIN needs to specify the patth to the libXrdClProxyPlugin.so

library. An example is shown below.

XRD_PLUGIN=/usr/lib64/libXrdClProxyPlugin.so

XROOT_PROXY=root://esvm000:2010//

xrdcp -f -d 1 root://bigdata.cern.ch//tmp/file1.dat /tmp/dump

[1.812kB/1.812kB][100%][======================================][1.812kB/s]

This will first redirect the client to the XRootD server at esvm000:2010, presumably a

forwarding proxy, will fetch the data from the XRootD server at

bigdata.cern.ch:1094 (i.e. using the default port).

You can also specify a list of exclusion domains, for which the original URL will not

be modified even if the plug-in is enabled. An example is shown below.

XRD_PLUGIN=/usr/lib64/libXrdClProxyPlugin.so

XROOT_PROXY=root://esvm000.cern.ch:2010//

XROOT_PROXY_EXCL_DOMAINS="some.domain, some.other.domain, cern.ch "

xrdcp -f -d 1 root://esvm000.cern.ch//tmp/file1.dat /tmp/dump

This will not redirect the traffic since the original URL "root://esmv000.cern.ch//"

contains the "cern.ch" domain which is in the list of excluded domains. This is useful

when a proxy server is only needed for out of domain access.

Configuration Proxy Service

14 16-May-2019 Configuration

Proxy services can be configured to automatically be in effect via a client

configuration file. The XRootD client looks for plug-in configurations in three

places:

 Global: /etc/xrootd/client.plugins.d/

 User: ~/.xrootd/client.plugins.d/

 Application: XRD_PLUGINCONFDIR envar setting.

The plug-in manager will first search for global configuration files. The global

settings may be overridden by user configuration files. Global and user settings may

be overridden by configuration files found in a directory pointed to by the

XRD_PLUGINCONFDIR environmental variable, if set. Overrides are based on the

name of the configuration file (i.e. only one configuration of the same name is

processed).

Be aware that the client plug-in manager only processes files that end with “.conf”.

All plug-in configuration files specify key-value settings that control plug-in

processing. A proxy service plug-in configuration file contents for the previous

xrdcp example using environmental variables is shown below.

url = *

lib = /usr/lib64/libXrdClProxyPlugin.so

enable = true

xroot_proxy = root://esvm000.cern.ch:2010//

xroot_proxy_excl_domains = some.domain,some.other.domain,cern.ch

Placing the above configuration in the global directory forces all XRootD client

applications to transparently forward all requests to esvm000.cern.ch:2010 which

will then proxy the requests as needed.

The client plug-in manager silently ignores any configuration files that are missing

the “url”, “lib”, or “enable” keywords. You must turn on debugging to see which

configuration files are actually processed.

The automatic proxy selection described in this section is only available starting in

release 4.7.0.

Proxy Service Configuration

Configuration 16-May-2019 15

3 Standard Proxy Service

The ofs layer can provide a proxy service by using a special oss plug-in,

“libXrdPss.so”. A proxy service is required if wish to provide public internet access

to data served by xrootd servers that can only access a private network or sit behind

a firewall. You do not need to setup a proxy service if all of your xrootd servers are

accessible via the public network.

As shown in

the diagram to

the left, a

proxy server

must have

access to the

public as well

as private or

firewalled network. Typically, machines with this capability are called border nodes.

A border node

is a computer

that either has

access to the

public as well

as the private

network using

two distinct IP

addresses or one that is allowed to access the public network through a firewall

using a single local IP address.

The particular scenario in effect is a local option determined by your particular

network setup. The biggest challenge is to properly setup the network configuration;

a task best left to networking personnel.

Two IP address scenarios require static routes to be established within the border

machine so that the local xrootd cluster is always found using the private network

while internet traffic uses the public network. Single IP address scenarios (i.e.

firewalled networks) require that special firewall rules be established to allow

internet access to the proxy server on the xrootd port while disallowing internet

access to the local xrootd cluster.

Configuration Proxy Service

16 16-May-2019 Configuration

Once routes or firewall rules have been established, you should use the netchk

utility, found in the xrootd utils directory, to see if you have access from an external

public node all the way to the redirector and each data server node. This verifies that

network routing or firewall rules have been correctly established. In order to use

netchk, perl must be installed on each machine and you must be able to do an ssh

login to each one of them. The utility is described in the last subsection of this

section.

The following sections describe how to setup a simple proxy server as well as a

proxy server cluster. Additionally, various tuning options are also described. These

options are independent of whether you setup a simple proxy or a proxy cluster.

3.1 Simple Proxy Server

The simple proxy server is configured as a non-clustered xrootd server. This means

you neither specify the all.role nor the all.manager directives documented in the

“Cluster Management Service Configuration Reference”. Other directives may be

specified at your discretion.

You control which paths are publically available using the all.export directive that is

specific to the proxy server (i.e. the proxy will only allow access to the specified

paths). This also means that data servers can provide read-write access to particular

paths while the proxy server can only provide read-only access to some or all such

paths. The same holds true for the stage attribute. You can prohibit staging files via

the proxy by exporting the files via the proxy with the nostage attribute.

The xrd.allow directive can be used to limit which range of hosts can use the proxy

server; while the sec.protocol directive can be used to limit access to the proxy

server to clients that can only be properly authenticated. These directives do not

differ from those you would use in a standard xrootd cluster and documentation can

be found the xrootd and security reference manuals.

Very few directives are needed to setup a simple proxy server. A sample

configuration file matching the illustrated cluster setup is shown below. Directives

shown in red are required; those shown in green are optional and serve to limit who

can actually use the proxy server.

Proxy Service Configuration

Configuration 16-May-2019 17

The ofs.osslib

directive tells

the ofs layer to

use the plug-in

that changes a

regular xrootd

server into a

proxy server.

Normally, the

plug-in is

named

“libXrdPss.so”. You must specify the location of this shared library plug-in. To

support checksum calculations you must also indicate that the checksum manager is

a proxy as well. This is done loading the proxy library via the ofs.ckslib directive.

The all.export directive restricts the proxy server to those paths you want to be

publically accessible. Most likely, you will also designate these paths as read-only

and nostage regardless of how they are locally served within the cluster.

The pss.origin directive tells the plug-in where the xrootd cluster’s redirector is

located (in the example it is x.domain.edu). The port number must match the port

number used by your local clients (in the example this is 1094). Indeed, the proxy

server is, in fact, just another local client that is capable of serving data across the

public internet.

 The two green directives, xrd.allow and sec.protocol, are used to limit who can use

the proxy server. The xrd.allow directive can restrict access by domain when you

use the asterisk notation. The sec.protocol directive can restrict access to

authenticated clients. While neither are required, your particular security

requirements may force you to specify one or both of them.

Proxy Service Configuration

Configuration 16-May-2019 19

3.2 Proxy Cluster

A proxy cluster consists of two or more simple proxy servers arranged as an xrootd

cluster. While one could use a load-balancing DNS to bridge together multiple proxy

servers, using the xrootd cluster management infrastructure to do this provides not

only true load balancing but also fail-over. That is, should a proxy server become

unresponsive an xrootd client will automatically switch to another working proxy

server. This also allows you to take down proxy servers for maintenance without

worrying if they are currently in use, as long as one proxy server remains.

The mechanics of setting up a proxy cluster is largely the same as setting up a

regular xrootd cluster. However, different parameters are specified for the all.role

and all.manager directives. Additionally, unlike a simple proxy server you must

also run a cmsd daemon everywhere you run an xrootd proxy server and you must

configure a

proxy

redirector. The

initial point of

contact for

external clients

is the proxy

redirector.

This is shown

in the adjacent

diagram.

Setting up a proxy cluster is a minor variation of setting up a standard xrootd

cluster. For proxy servers you need to identify the proxy manager and tell each

proxy server that it is part of a proxy cluster. This allows the proxy servers to cluster

around the proxy manager and the proxy manager then knows how to redirect

clients to a working proxy server. A sample configuration file follows. You should

compare it to one for a simple xrootd data cluster.

Configuration Proxy Service

20 16-May-2019 Configuration

All red

directives are

required. The

all.export and

pss.origin

directives are

the same as

for simple

proxy

servers. These

tell the

xrootd’s what

to expor, and

where the

xrootd data

cluster

resides,

respectively.

The

all.manager

directive tells

each proxy server who the proxy redirector is and what port the cmsd is using (here

we arbitrarily chose 1213).

In the if-fi construct roles are assigned to each server. Since z.domain.edu is the

redirector, its role is proxy manager. All other nodes in the proxy cluster have a role

of proxy server. This also causes the ofs layer to automatically load libXrdPss.so, by

default, as the ckslib and the osslib; making the ofs.ckslib and ofs.osslib directives

unnecessary. If the defaults are inappropriate, specify these directives to override

the default.

Since we only want true proxy servers to be allowed to connect to the cmsd running

on the proxy redirector node, the second if-fi construct specifies that only those

nodes are allowed to connect. This is especially important because the proxy

redirector is publically accessible and cmsd connections should be restricted to a

known set of hosts. The particular example uses a generic specification. You may

wish to make “allow” more specific. For instance, if proxy servers have a DNS name

of “proxynn.domain.edu”, where nn is a sequence number, then it would be better

to specify “xrd.allow host proxy*.domain.edu”.

Proxy Service Configuration

Configuration 16-May-2019 21

The green directives, xrd.allow and sec.protocol, are used to limit who can use the

proxy servers. The xrd.allow directive can restrict access by domain when you use

the asterisk notation. The sec.protocol directive can restrict access to authenticated

clients. While neither is required, your particular security requirements may force

you to specify one or both of them. You should especially note that these directives

apply only to the xrootd and not the cmsd. This is why they have been qualified by

an if-fi clause that applies them only to the xrootd proxy servers.

The default load distribution is to round-robin requests across all available proxy

servers. You can use the cms.sched directive for the proxy redirector along with the

cms.perf directive for proxy servers to do load balancing on actual load. These

directives are described in the cmsd reference manual.

When configuring a proxy cluster, all proxy servers must either be in direct mode,

forwarding mode, or combination mode. Any attempt to mix modes will lead to

unpredictable result.

If you are using disk-caching proxies, a different type of cluster configuration must

be used. Refer to the description of disk caching proxy clusters for details.

Configuration Proxy Service

22 16-May-2019 Configuration

3.3 Proxy Server Directives

The proxy server plug-in is based on xrootdFS which, is based on the xrootd POSIX

library which, in turn, uses the xrootd client library. Each of these components has

specific options that can be specified in the same configuration file used for the

proxy setup. Specifically, the following options are processed by the proxy

 all.export

 oss.defaults

 Proxy specific directives and options are described below.

pss.ciosync ssec msec

pss.config {[streams snum] [workers number]}

pss.dca [recheck {tm | off}]

pss.inetmode {v4 | v6}

pss.localroot path

pss.namelib [-lfncache] [-lfn2pfn] path [parms]

pss.origin dest | = [dest] required directive

pss.permit [/] [*] hspec

pss.setopt ConnectTimeout seconds

pss.setopt DataServerConn_ttl seconds

pss.setopt DebugLevel {0 | 1 | 2 | 3}

pss.setopt ParStreamsPerPhyConn number

pss.setopt ReconnectWait seconds

pss.setopt RedirectLimit number

pss.setopt RedirectorConn_ttl seconds

pss.setopt RequestTimeout seconds

pss.setopt TransactionTimeout seconds

pss.setopt WorkerThreads number

dest: host[:port | port]

Proxy Service Configuration

Configuration 16-May-2019 23

Where:

ciosync ssec msec

Configures the parameters for cache I/O synchronization when a file is closed.

All outstanding I/O for a file being closed must completed within msec,

otherwise the file object is orphaned to prevent the possibility of a crash. The

default is 30 seconds for ssec and 180 seconds for msec. This directive is only

applicable to a proxy configured with a cache.The parameters are:

ssec The number of seconds between attempts to synchronize

outstanding I/O with a file close request. The minimum value is

10 seconds. You may suffix the value with s, m, or h for seconds

(the default), minutes, or hours, respectively.

msec The maximum number of seconds that I/O may be outstanding

before closure of the file is abandoned and the file object is

orphaned. The value must be greater than or equal to ssec times

two. You may suffix the value with s, m, or h for seconds (the

default), minutes, or hours, respectively

config

Configures various parameters affecting the fuse interface. The defaults are:

streams 512 workers 16

Otherwise, the following option may be specified:

streams The number of parallel streams (i.e. connections) to be used when

processing a stat() call. The default is 512. You may specify a

maximum of 8192.

workers The number of parallel threads to be used when collecting

information from data servers or issuing requests to multiple

data servers due to a single request. The default is 16.

dca [recheck {tm | off}]

Enables direct cache access if the proxy server is configured to be a disk

caching server. Direct cache access is only available for clients that can be

redirected to an actual file (i.e. release 4.8.0 or above). The parameters are:

recheck tm The number of seconds between checks whether or not the file is

fully cached. The client is redirected to the file on the next read

should the file be fully cached. This is only done should the

client support redirects on a read request (i.e. release 4.9.0 or

above). Specify for tm the number of seconds between checks.

You may also suffix tm with h, m, or s to indicate hours, minutes,

or seconds, respectively.

recheck off Turns off periodic checking for a fully cached file. This is the

default. The client is only redirected to the file upon opening it

should it be fully cached

Configuration Proxy Service

24 16-May-2019 Configuration

inetmode

Specifies the network stack to use when connecting to other servers. The

default is determined by the -I command line option; which defaults to v6.

Options are:

v4 Use the IPV4 network stack to connect to servers. This means

only servers reachable by IPV4 addresses may be used.

v6 Use the IPV6 network stack to connect to servers. This means

only servers reachable by IPV4 mapped addresses or IPV6

addresses may be used. This is the least restrictive option.

localroot

Configures the default name- to-name mapping using the specified path. The

action is identical to that of oss.localroot but is only used by the proxy to map

file names prior to requesting action from the origin.

namelib

specifies the name- to-name mapping plug-in library. This directive works

just like the oss.namelib directive but only applies to the proxy server. When

neither the –lfncache nor –pfn2lfn options are specified, then –pfn2lfn is

assumed. Otherwise, you must specify all the required options:

-lfncache Calls the namelib plugin’s pfn2lfn() method to convert the

incoming physical filename to a logical one. That filename is

used to track the file in any configured cache. This implies that

different physical filenames may map onto the same file as long

as they have the same logical name.

-lfn2pfn Calls the namelib plugin’s lfn2pfn() method to convert the

incoming logical filename to a physical one. That filename is

used to access the file at the specified origin.

origin specifies the location of the redirector or server for which the server being

configured is to proxy. This directive is required.

host The DNS name or IP address of the redirector or server being proxied.

port The TCP port number or service name of the redirector or server

associated with host. The port may be specified with an adjacent colon

or space separation. The default is 1094.

= Configures the proxy in forwarding mode where the client supplies

the actual endpoint. If a host and optional port follows the equals sign

then this endpoint is used when the client has not specified a root or

xroot URL as an endpoint. Otherwise, the client receives a “not

supported” error.

Proxy Service Configuration

Configuration 16-May-2019 25

permit

 specifies an allowed destination that a client can use via a forwarding mode

proxy. If no permit directives are specified, no restrictions apply. Permits, by

default, apply to path and objectid URLs.

/ The permit applies only to path-type URLS.

* The permit applies only to objectid-type URLS.

hspec The DNS host name allowed as a target connection. Substitute

for name a host name or IP address. A host name may contain a single

asterisk anywhere in the name. This lets you allow a range of hosts

should the names follow a regular pattern or if you wish to allow

connections to all hosts in a particular domain. IP addresses may be

specified in IPV4 format (i.e. “a.b.c.d”) or in IPV6 format (i.e.

“[x:x:x:x:x:x]”).

setopt

Configures the xrootd client used by the proxy top communicate with the

origin. Each setopt directive allows a single configuration argument. Specify

one or more of the following, as needed.

ConnectTimeout

The number of seconds to wait for a server connection to complete.

The default is 120 seconds.

DataServerConn_ttl

The number of seconds to keep an idle data server socket open. The

default is 1200 (i.e. 20 minutes).

DebugLevel

The level of debugging. 0, the default, turns off debug output;

increasing values produce more detail.

ParStreamsPerPhyConn

The number of parallel TCP streams to use for data server I/O. You

can specify a number from 0 to 15. The default is 2.

ReconnectWait

The number of seconds to wait between server reconnects in the

presence of a fatal error. The default is 1800.

Configuration Proxy Service

26 16-May-2019 Configuration

RedirectLimit

The maximum number of sequential (i.e. without a break) redirects

to other servers that may occur before a fatal error is declared. The

default is 16.

RedirectorConn_ttl

The number of seconds to keep an idle redirector socket open. The

default is 3600 (i.e. 60 minutes).

RequestTimeout

The maximum number of seconds a request can be active without a

response before an error is declared. The default is 300 seconds.

RequestTimeout

The maximum number of seconds a request can be active without a

response before an error is declared. The default is 300 seconds.

TransactionTimeout

The maximum number of seconds of wait-time that can be imposed

by the server before an error is declared. The default is 28800 (i.e. 8

hours).

WorkerThreads

The maximum number of responses that can be processed in parallel.

Each response is handled in a separate thread. The default is 64.

Notes

1) The inetmode option allows you to create network protocol stack bridges.

Fr instance, if the proxy accepts IPV6 addresses and inetmode v4 is

specified; the proxy becomes a bridge between incoming IPV6 addresses

and an IPV4 network.

2) The proxy also accepts environmental variables that control the

underlying xrootd client. Some of these environmental variables offer

more extensive control over the client’s behavior then the setopt directive

allows. When an environmental variable is set, it over-rides the equivalent

specification in the configuration file. The variables are described in the

documentation for the xrdcp command.

3) For more information on the pss.dca directive see the section on Direct

Cache Access

Proxy Service Configuration

Configuration 16-May-2019 27

4 Disk Caching Proxy

The disk caching proxy is almost identical to the standard proxy except that a disk is

substituted for a memory cache. This makes the proxy more suitable for WAN

access. The libXrdFileCache.so shared library is a proxy server cache plug-in used

for caching of data into local files. Two modes of operation are supported.

The first mode simply pre-fetches complete files and stores them on local disk. This

implementation is suitable for optimization of access latency, especially when

reading is not strictly sequential or when it is known in advance that a significant

fraction of a file will be read, potentially several times. Of course, once parts of a file

are downloaded, access speed is the same as it would be for local XRootD access.

The pre-fetching is initiated by the file open request, unless the file is already

available in full. Pre-fetching proceeds sequentially, using a configurable block size

(1 MB is the default). Client requests are served as soon as the data becomes

available. If a client requests data from parts of the file that have not been pre-

fetched yet the proxy puts this request to the beginning of its download queue so as

to serve the client with minimal latency. Vector reads are also fully supported. If a

file is closed before pre-fetching is complete, further downloading is also stopped.

When downloading of the file is complete it could in principle be moved to local

storage. Currently, however, there are no provisions in the proxy itself to coordinate

this procedure.

A state information file is maintained in parallel with each cached file to store the

block size used for the file and a bit-field of blocks that have been committed to disk;

this allows for complete cache recovery in case of a forced restart. Information about

all file-accesses through the proxy (open & close time, number of bytes read and

number of requests) is also put into the state file to provide cache reclamation

algorithms with ample details about file usage.

The second mode supports on-demand downloading of individual blocks of a file

(block-size can also be passes as cgi information in the file-open request). The

distinguishing feature of the second implementation is that it only downloads the

requested fixed-size blocks of a file.

Configuration Proxy Service

28 16-May-2019 Configuration

While the main motivation is to provide pre-fetching of HDFS blocks (typical size 64

or 128 MB) when they become unavailable at the local site, either permanently or

temporarily due to server overload or other transient failures. As HDFS block size

is a per-file property, it has to be passed to the proxy on per-file basis as a cgi

parameter on the file’s URL Each block is stored as a separate file, post-fixed by

block size and its offset in the full file; this facilitates potential reinjection back into

HDFS to heal or increase replication of a file-block. Extensions to the HDFS have

been developed to allow for an immediate fallback to XRootD access when local

HDFS storage fails to provide the requested block.

That said, the mere fact that only referenced blocks are cached makes the caching

proxy a powerful tool for any kind of remote file system, irrespective of block size.

This is especially true in workloads that reference of a fraction of the file. Because

only relevant blocks are cached, disk space usage is minimized and overall WAN

performance is improved especially when running multiple jobs that largely

reference the same blocks.

When additional file replicas exist in a data-federation, the remote data can be used

to supplement local storage, to improve its robustness, and to provide a means for

healing of local files. In particular, our intention is to avoid any local file replication

of rarely-used, non-custodial data.

Unlike the full-file pre-fetching version, the partial-file proxy does not begin pre-

fetching any data until a read request is actually received. At that point a check is

made if the blocks required to fulfill the request exist on disk and, if they don't, they

get queued for pre-fetching in whole. The client request is served as soon as the data

becomes available.

Proxy Service Configuration

Configuration 16-May-2019 29

4.1 Configuration

The disk caching proxy is implemented as a specialized caching plug-in that

supplants the optional memory caching provided by the standard proxy server.

Disk caching proxy specific directives and options are described below.

pss.cachelib path [libopts] required directive

pss.ccmlib path [libopts]

pfc.blocksize bytes[k|m]

pfc.decisionlib path [libopts]

pfc.diskusage lowWatermark[k|m|g|t] highWatermark[k|m|g|t]

 [files base[k|m|g|t] nom[k|m|g|t] max[k|m|g|t]]

 [{purgeinterval | sleep} purgeitvl[h|m|s]]

 [purgecoldfiles age{d|h|m|s} period]

pfc.hdfsmode [hdfsbsize bytes[k|m]]

pfc.osslib path [libopts]

pfc.prefetch numPrefetchingBlocksPerFile

pfc.ram bytes[m|g]

pfc.spaces data metadata

pfc.trace {none | error | warning | info | debug | dump}

pfc.user username

pfc.writequeue maxblks nthreads

Configuration Proxy Service

30 16-May-2019 Configuration

Required Directive

cachelib path [libopts]

specifies the path of he shared library than contains the disk caching proxy

plug-in. It may be followed by options, if any. Currently, there are no options.

Optional Directives

blocksize bytes[k|m]

sets the block size used by proxy. Specify for bytes the size of a block. The

quantity may be suffixed by k or m to indicate kilo- or megabytes,

respectively. All read requests, including prefetching are rounded up into

requests of this size and aligned to block boundaries. Read requests that cross

one or more block boundaries are issued as separate read requests. This is

also the size that gets written to disk in a single operation. The default is 1m

(i.e. one megabyte).

ccmlib path [libopts]

specifies the location of the shared library that contains the cache context

manager plugin provides custom cache semantics. Specify for path the

location of the ccm plugin shared library and, optionally, plugin specific

options for libopts.

decisionlib path [libopts]

specifies the location of the shared library that contains the cache decision

plugin which determines whether or not to cache a file. All files are cached if

a plugin is not specified. Specify for path the location of the decision plugin

shared library and, optionally, plugin specific options for libopts.

Proxy Service Configuration

Configuration 16-May-2019 31

diskusage

specifies physical storage management properties. The parameters and

options are (see the notes for additional caveats):

lowWatermark[k|m|g|t] highWatermark[k|m|g|t]

specifies the total usage on the file system or set of disks configured with

the oss.space directive that triggers purging of cached files

(highWatermark) and the total usage at which the purging is stopped

(lowWatermark). The watermarks must be specified as a decimal fraction

of total available space (default values are 0.90 and 0.95) unless the values

are suffixed by k, m, g, or t. In which case, they must be absolute sizes in

k (kilo-), m (mega-), g (giga-), or t (tera-) bytes, respectively.

files base[k|m|g|t] nom[k|m|g|t] max[k|m|g|t]

Specifies limits for actual usage of disk space by the data files owned by

the configured cache instance. When files reach max, they are purged

down to nom. If purging due to total disk usage requires further removal

of files, they will be purged down to base if required for reaching of

lowWatermark disk usage. Specify absolute sizes suffixed by k (kilo-), m

(mega-), g (giga-), or t (tera-) bytes. Default: limits are not set and file

usage limits are not checked nor enforced.

{purgeinterval | sleep} purgeitvl[h|m|s]

specifies the interval between subsequent disk usage checks. Specify for

purgeitvl a number optionally suffixed by h for hours, m for minutes, or s

for seconds. The resulting value must be between 60 and 3600 seconds.

The default is 300s. The keyword sleep is a deprecated synonym.

purgecoldfiles age{d|h|m|s} period

specifies the time since last access at which a file is unconditionally

purged. This is useful for cache instances that share disk space and are

only used sporadically so it makes sense to clear the cache between peak

usages. Specify for age a number optionally suffixed by h for hours, m for

minutes, or s for seconds. The resulting value must be between 1h and

360d, inclusive. The period argument specifies how many purge cycles

need to occur before an age check if performed. This avoids redundant

scanning of meta-data when other purge conditions (disk and file-usage

based ones) are not met. There is no default and cold files are not purged

unless this parameter is specified.

Configuration Proxy Service

32 16-May-2019 Configuration

hdfsmode [hdfsbsize bytes [k|m]]

enables storage of file fragments as separate files. This is specifically used for

storage healing in HDFS. Specifying bytes sets the default fragment size.

Specify for bytes the size of a fragment. The quantity may be suffixed by k or

m to indicate kilo- or megabytes, respectively. The default is 128MB.

osslib path [libopts]

specifies the location of the shared library that contains the storage system

plugin that should be used for all cache operations (i.e. read, write, etc).

Specify for path the shared library that contains the plugin and, optionally,

plugin specific parameters for libopts. The default is to use standard oss plug-

in for all file system functions. Refer to the “Open File System & Open

Storage System Configuration Reference” on how to configure the standard

oss plug-in.

prefetch num

maximum number of pre-fetching blocks per file. The default is 10. Set this

value to 0 to disable pre-fetching.

ram bytes[m|g]

maximum allowed RAM usage for caching proxy buffers that still need to be

written to disk. Beyond that point the cache will serve further read requests

by forwarding them to the remote server (note, it still needs to allocate buffers

for this). For clients, specify a value between 256m and 64g (default is 256m).

For servers, specify a value between 1g and 256g (default is 1g).

spaces data metadata

spacifies the names of oss space name for data and the oss space name for

metadata. The oss.space directive is used to create spaces. Default value of

both is public.

trace {none | error | warning | info | debug | dump}

Set severity level of caching proxy log messages. The levels are listed in

increasing verboseness. The default value is warning..

user username

specifies the user name to pass to the osslib plug-in when accessing the disk

cache. Specify a valid Unix user name for username. Normally, this should be

the user name of the proxy daemon.

Proxy Service Configuration

Configuration 16-May-2019 33

writequeue maxblks nthreads

specifies how disk cache write-backs are to be handled. Specify for maxblks

the maximum number of blocks to be taken off the pending write queue and

written to disk in a single iteration of the disk-writer loop. Accepted values

are between 1 and 1024. The default is 16 for a regular proxy server and 8 for

a server-less proxy cache. Specify for nthreads the number of threads that

perform writing of cache blocks to disk. Accepted values are between 1 and

64. The default is 4 for a regular proxy server and 1 for a server-less proxy

cache.

Notes

1) All features of the standard Open Storage System are available to the disk

caching proxy. Perhaps the most essential feature is logical volume

management that allows the concatenation of disk partitions into a single

logical volume. Thus, you can easily extend the disk cache. See the oss.space

directive in the “Open Storage System Configuration Reference”. There are

many other oss options that may also be helpful in extending the features of

the disk caching proxy.

2) If several caching servers are running on the same file system or set of disks

configured with oss.space directive, they should all use the same

lowWatermark, highWatermark, and purgeinterval. They can use different

settings for the files section and can even oversubscribe the disk usage for

nom usage as the low/highWatermark mechanism will kick in to ensure

specified amount of disk remains free. The baseline values for all the instances

should add up to less than lowWatermark.

Examples

a) Enable proxy file prefetching:
pps.cachelib libXrdFileCache.so

pfc.ram 100g

oss.localroot /data/xrd-file-cache

pfc.blocksize 512k

pfc.prefetch 8

b) enable hdfs healing mode, with block size 64 MB:
pss.cachelib libXrdFileCache.so

pfc.ram 100g

oss.localroot /data/xrd-file-cache

pfc.hdfsmode hdfsbsize 64m

Proxy Service Configuration

Configuration 16-May-2019 35

4.1.1 Disk Caching S3-type Objects

The disk caching feature can be used to also cache S3-type data objects (e.g. Ceph

objects). Such objects are identified by object ID and do not start with a slash. You

must specify certain configuration options to enable successful caching of S3-type

objects. Minimally, you need the following set of directives in addition to any other

applicable directives.

all.export *?

pss.namelib –lfncache libXrdN2No2p.so [parms]

parms: [-maxfnlen len] [-slash {c | xx}] [prefix]

The all.export directive specifies that object ID’s are allowed and that any CGI

information (i.e. characters after the first question mark) are to be removed from the

object ID and passed as separate information to the proxy plugin. The plugin

requires that any CGI information be passed separately so must specify ‘*?’ to get

consistent results.

A special Name2Name plugin must be used to convert object ID’s to file paths so

that the data they refer to can be cached as local disk files. You don’t need this

plugin if the storage system plugin you specified using the pfc.osslib directive is an

object store (e.g. Ceph). The default cache storage system is a file system store via

the oss plugin.

The plugin handles object ID conversion as follows:

1) All occurrences of a slash (i.e. ‘/’) are changed to be a reverse slash (i.e. ‘\’ or

escape). This is necessary to prevent object id’s containing slashes from

colliding. If your object ID’s use reverse slashes then you must choose

another character that you won’t use in the ID’s and specify that character

using the ‘-slash’ option in the parms passed to the plugin. You can specify it

as a single character or as a two character hexadecimal code (e.g. 32 for a

space character).

2) The maximum allowed filename length is determined by what is allowed to

be created in ‘/’ directory. If this is incorrect, use the –maxfnlen parms option

to specify the correct maximum length.

Configuration Proxy Service

36 16-May-2019 Configuration

3) If the object ID is longer than what is allowed for a filename length, the object

ID is transformed into a path by splitting the ID into filename max units until

the ID is exhausted. Otherwise, two 1-character hash codes are developed

from the object ID itself and each is used as a directory prefix to the object ID.

The directory names are actually two character hexadecimal digits

representing each hash character.

4) If a prefix is specified in the parms passed to the plugin, it is used to prefix the

result from the previous step. This allows you to place all object ID’s in a

separate directory in the cache.

Using the above steps, an object ID of say “foobar” would be placed in

/osslocalroot/prefix/68/7F/foobar

Where osslocalroot comes from the oss.localroot directive and prefix comes from

parms passed to the plugin. Either or both may be null.

Proxy Service Configuration

Configuration 16-May-2019 37

4.2 Disk Caching Proxy Clusters

You may cluster disk-caching proxies (DCP’s) to provide for additional bandwidth

and disk space using a redirector. However, clustering DCP’s is not the same as

clustering standard proxy servers because DCP’s maintain a semi-permanent disk

cache and cannot see the contents of each other’s cache. Furthermore, clients

opening a file must be vectored to the DCP that has already partially or fully cached

the requested file and if the file is not present in any cache the client must be

redirected to a DCP with sufficient disk space to cache the file.

In some sense a DCP is a combination of a proxy and a disk server. Hence, they

need to be clustered as disk servers not as standard proxy servers. In the figure to

the left, two disk caching proxy servers,

DCP-A and DCP-B are clustered using a

redirector. Each DCP has its own disk

cache that may not be shared. In fact, any

attempt to share the same space using,

say, a distributed shared file system will

result in data corruption or loss. The minimal configuration file for such a cluster is

shown on the next page. The configuration file uses host names of dcp-a, dcp-b, and

redirector for each server component in the cluster.

Configuration Proxy Service

38 16-May-2019 Configuration

Tell everyone who the manager is

all.manager redirector:1213

The redirector and all cmsd’s export /data red-only with the stage option. The stage

option requests that if the file isn’t found in the cluster the redirector should send

the client to a PFC server with enough space to cache the file.

all.export /data stage r/o

Configuration is different for the redirector, the server cmsd, and

for the server xrootd. We break those out in the if-else-fi clauses.

if redirector

all.role manager

Export with stage option - if the file isn’t found in the cluster the

redirector sends the client to a PFC server with enough free space.

all.export /data stage r/o

Server’s cmsd configuration – all PFC’s are virtual data servers

else if exec cmsd

all.role server

Export with stage option - this tells manager cmsd we can pull files from the origin

all.export /data stage r/o

The cmsd uses the standard oss plug-in to locate files in the cache.

oss.localroot directive should be the same as for the server.

oss.localroot /pfc-cache

Server’s xrootd configuration – all PFC’s are virtual data servers

else

all.role server

For xrootd, load the proxy plugin and the disk caching plugin.

ofs.osslib libXrdPss.so

pss.cachelib libFileCache.so

The server needs to write to disk, stage not relevant

all.export /data rw

Tell the proxy where the data is coming from (arbitrary).

pss.origin someserver.domain.org:1094

Tell the PFC’s where the disk cache resides (arbitrary).

oss.localroot /pfc-cache

Tell the PFC’s available RAM

pfc.ram 100g

fi

Proxy Service Configuration

Configuration 16-May-2019 39

4.3 Handling Cache Overloads

The disk caching service used by the proxy server is able to detect overload

conditions and notify the server that it is not able to service an incoming request.

The default action taken by the proxy server is to delay the client until the cache can

handle additional requests. However, it is also possible to redirect the client to

another server. This can be another proxy server because of a firewall or to redirect

he client to the actual origin of the data when there is no firewall. Redirection

choices are specifying using the xrootd.fsoverload directive; refer to the

“Xrd/XRootd Configuration Reference” for full details. This section explains

overload redirection concepts to assist you in your configuration choices.

The graphic on the left shows a typical proxy

that sits behind a firewall. All access to the

internet requires that a proxy server be used.

Normally, clients connect to the caching proxy

server. This can be a direct mode, forwarding

mode, or combination mode proxy. It doesn’t

really matter. When the caching layer indicates

an overload, the client is redirected to another regular (i.e. non-caching) proxy to

effect access to the data through the firewall. Both proxies specify the same origin

configuration (see the pss.origin directive). However, the caching proxy server also

specifies the xrootd.fsorverload directive using the redirect option to specify the

alternate proxy server to use should the caching proxy become overloaded.

If your site does not have a firewall but you

still want to cache data closer to your site; you

would also setup a caching proxy server. The

pss.origin would specify the host that

normally clients would connect on the

internet. If the caching proxy becomes

overloaded the xrootd.fsoverload directive

specifies, via the redirect option, to send the client directly.

Configuration Proxy Service

40 16-May-2019 Configuration

Finally, you can also use a forwarding mode or

combination mode caching proxy without

using a firewall. However, the xrootd layer

must be told that client can be redirected to

their original destination should a forwarding

location be specified. This is done by adding

the bypass option to the xrootd.fsoverload directive. The reason that you must

specify bypass is to allow the proxy service apply outgoing restrictions via the

pss.permit directive before any redirection occurs. If you do not specify bypass, then

the client is redirected to the host specified via the redirect option which usually is

another proxy server that knows how to handle site forwarding.

Cache overload handling can be specified on an individual proxy server or all proxy

servers within a cluster.

4.4 Direct Cache Access

The proxy system service, when configured to be a disk caching proxy, supports

direct cache access should the file be fully cached. This only makes sense when the

cache is directly available to clients using the service. This is normally the case when

the cache is located on a distributed file system (e.g. GPFS, Lustre, etc) and all nodes

running client applications have the file system mounted at the same mount-point as

the proxy service. Direct cache access is a feature of the Proxy Storage Service and

must be enabled using the pss.dca directive.

Direct cache access can provide a significant performance enhancement, especially if

the file system uses RDMA to transfer data to the client. Even without RDMA,

eliminating the server between the client and the data can substantially increase

performance.

Direct cache access is only available to clients that support redirection to a file on

open (i.e. release 4.8.0). The secondary mode of redirecting the client to a file during

read operations is only supported for release 4.9.0 clients. Should a client not

support the required redirection level, the Proxy Storage System selectively inhibits

redirecting the client and continues to provide the appropriate level of access.

Proxy Service Configuration

Configuration 16-May-2019 41

5 Memory Caching Proxy

The memory caching proxy is almost identical to the standard proxy except that

memory is used to hold recently read data. The memory cache is used to satisfy

future reads if the requested data is present in the cache. This avoids re-fetching data

from the originating server. A memory cache proxy may make LAN transfers more

efficient, depending on the data access pattern.

You configure a memory caching proxy the same way you configure a standard

proxy server with the addition of a pss.cache directive, described in the next section.

Be aware that disk caching proxies and memory caching proxies are mutually

exclusive (i.e. you cannot configure both in the same server).

5.1 Configuration

Proxy memory caching specific directives and options are described below.

pss.cache [cacheopts]

cacheopts: [debug dbg] [logstats] [max2cache mc] [minpages mp]

 [pagesize ps][preread [prpgs [minrd]]

 [perf prf [rcalc]]] [r/w]

 [sfiles {off | on | .sfx}] [size sz] [cachepots]

Where:

cache

Configures memory caching of data. By default, memory caching is turned

off. Specifying the cache directive with no cachepots is equivalent to

specifying:

debug 0 minpages 256 pagesize 32k preread 0 sfiles off size 100m

If the cachelib directive is specified, the cache options have no effect.

Otherwise, the following options may be specified:

debug sets the debugging level: 0 is off, 1 is low, 2 is medium, and 3 is

high. The default is 0.

Configuration Proxy Service

42 16-May-2019 Configuration

logstats prints statistics about cache usage for every file that is fully

closed.

max2cache the largest read to cache in memory. The value is set to the

pagesize if it is smaller than pagesize or not specified (i.e.

default). The limit does not apply to pre-read operations. The mc

value may be suffixed by k, m, or g to scale mc by 210, 220, or 230,

respectively.

minpages specifies the minimum number of pages that the cache should

hold. If it is unspecified or is less than one it is set to 256.

pagesize the size of each page in the cache. It is adjusted to be a multiple

of 4k. This also establishes the minimum read size from a data

server. The ps value may be suffixed by k, m, or g to scale ps by

210, 220, or 230, respectively. The default is 32K.

preread enables pre-read operations. By default no data is pre-read.

Specify the number of additional pages to be read past the last

read page. You also follow prpgs by the read size that triggers a

pre-read. Reads less than minrd cause a pre-read to occur. The

minrd value may be suffixed by k, m, or g to scale minrd by 210,

220, or 230, respectively. The default is the pagesize value plus

one. Specifying preread with no options is equivalent to

specifying:

preread 1 perf 90

preread perf specifies the minimum required performance from automatic

pre-reads and is part of the preread options. When this

performance cannot be obtained for a file, pages are no longer

automatically pre-read for the file. Performance is measured as

the number pre-read pages used divided by the number actually

pre-read times 100. Specify a value between 0 and 100 for prf.

The default is 90 (i.e., 90% of all pre-reads must be useful). The

prf may be followed by rcalc, the number of pre-read bytes that

trigger a new performance calculation. The rcalc value may be

suffixed by k, m, or g to scale num by 210, 220, or 230, respectively.

The default is 52428800 (i.e. 50m).

r/w caches files opened in read/write mode. By default, only files

opened read/only are cached.

Proxy Service Configuration

Configuration 16-May-2019 43

sfiles enables or disables optimization for structured file (e.g., root

files). Cache usage is optimized for the typical access patterns

associated with structured files. Specify off to turn off this

feature (the default), on to always use this feature, or a dot

followed by a suffix (i.e. .sfx). Only files whose names end with

this suffix, including the dot, will have this optimization applied.

size specifies the size of the cache in bytes. See the notes on how this

value is adjusted irrespective of the specification The sz value

may be suffixed by k, m, or g to scale sz by 210, 220, or 230,

respectively. The default is 100m.

Notes

1) The size value may be adjusted upwards or downwards depending on the

pagesize and minpages values. The following adjustments are made:

a. The size value is adjusted downwards to be a multiple of pagesize.

b. The final size value is either the adjusted size or minpages multiplied

by the pagsize,,whichever is greater.

Proxy Service Configuration

Configuration 16-May-2019 45

6 POSIX Server-less Caching
The subsystems that support caching proxy servers may also be used to setup a

server-less proxy cache. This is essentially a client-side application cache. It caches

data either in memory or on disk (depending on the configuration) by intercepting

file system calls. Any data that is read is locally cached. Currently, this feature is

available only via the POSIX preload library (i.e. libXrdPosixPreload.so) or by

directly linking with libXrdPosix.so and using the XRootD POSIX interface API’s

defined in one of the following public include files:

 XrdPosix.hh,

 XrdPosixExtern.hh, or

 XrdPosixXrootd.hh

Using the XRootD POSIX API’s is straightforward as they do not differ from the

standard POSIX API’s. The API’s defined in XrdPosix.hh and XrdPosixExtern.hh

accept either simple paths or XRootD URL’s. A simple file path vectors the request

to the local file system while an XRootD URL (i.e. one that starts with xroot:// or

root://) vectors the request to the specified server. You can define virtual mount

points that convert specified simple paths to actual URL’s. The interface defined in

XrdPosixXrootd.hh only accepts XRootD URL’s.

The preload library mechanism offers a very simple way to run POSIX-compliant

programs without needing to change them or even recompile them. You can invoke

your program with a simple shell script shown below.

LD_PRELOAD=/usr/lib64/libXrdPosixPreload.so

export LD_PRELOAD

$*

Note that you may need to change the LD_PRELOAD value if the preload library is

not installed in a standard place. So, assume the script is called runit then executing

runit ls /tmp

produces a directory listing of the local /tmp directory while

runit ls xroot://someserver//tmp

produces a directory listing of someserver’s /tmp directory, if allowed.

Regardless of whether you use the direct API or the preload library, you need to tell

the XRootD POSIX subsystem that you wish to cache data (i.e. configure caching).

Configuration Proxy Service

46 16-May-2019 Configuration

This is done by setting the XRDPOSIX_CONFIG environmental variable to the path

to your configuration file. For instance, we can augment the previous runit script to

also specify the location of the configuration file that can be used to enable caching.

LD_PRELOAD= /usr/lib64/libXrdPosixPreload.so

XRDPOSIX_CONFIG=/home/abh/psx.cf

export LD_PRELOAD XRDPOSIX_CONFIG

$*

So, /home/abh/psx.cf contains the needed directives to setup local caching.

6.1 Server-less Disk Caching

To enable disk caching, you need to specify at least the following directives in your

configuration file.

posix.cachelib /usr/lib64/libXrdFileCache.so

oss.localroot cachepath

pfc.diskusage fracLow fracHigh

pfc.ram bytes[m|g]

The cachelib directive tells the system to use local disk caching using the

libXrdFileCache.so plug-in. You may need to change the path is this plug-in is

installed in a non-standard directory.

The localroot directive specifies the disk location of the cache. The cachepath should

be some existing directory path where cached file blocks can be permanently placed.

The diskusage directive specifies how much disk to use and at what point unused

cached blocks should be deleted. Specify for fracLow the space utilization percentage

that triggers purging. Specify for fracHigh the percentage of space utilization that

must be reached for purging to stop. The default is “0.9 0.95” (i.e. 90% 95%) but a

more reasonable combination might be “0.45 0.50” to prevent total use of your local

disk. The diskusage boundaries, can be specified also in g or t bytes units for giga-

and tera-bytes, respectively. Since controlling the amount of disk space that the file

cache can use is tricky, you may wish to use a separate disk partition for the cache.

Proxy Service Configuration

Configuration 16-May-2019 47

Finally, the ram directive tells the disk cache the maximum amount of memory that

it may use. The larger the amount the better will be the performance.

All of the “pfc.” prefixed directives are available for your use (see the Disk Caching

Proxy Configuration section). A limited number of ”pss.” directives are also

available but these directives must be prefixed with “posix.” in order to be

recognized (see the section on esoteric directives). Since the disk caching subsystem

uses the standard storage system plug-in to handle the disk cache, you can also use

most of the “oss.” prefixed directives documented in the “Open File System & Open

Storage System Configuration Reference”. However, it’s best to ignore the “pss.”

and “oss.” directives unless you have very special needs.

6.2 Server-less Memory Caching

Using memory caching is far simpler than using disk caching because there is less to

configure. Your configuration file needs to only have one directive, as shown below.

posix.cache [cachepots]

The cacheopts are identical to the ones described in the Memory Caching Proxy

Configuration section using the pss.cache directive.

6.3 Esoteric Directives

The following table lists available directives that enable highly specialized features.

For details on these options see the Proxy Configuration section.

POSIX Directive Documented Notes

posix.ccmlib pss.ccmlib Allows running a cache context manager.

posix.ciosync pss.ciosync Controls cache synchronization on close.

posix.inetmode pss.inetmode Controls TCP/IP stack usage.

posix.namelib pss.namelib Allows name mapping and cache squashing.

posix.setop pss.setopt Controls.underlying XRootD client.

posix.trace pss.trace Enables tracing.

Configuration Proxy Service

48 16-May-2019 Configuration

6.4 Defining Virtual Mount Points

When using the POSIX preload library or the XrdPosixExtern.hh interface, you can

define virtual mount points. A virtual mount point equates a path to an XRootD

URL. Thus, any use of that path is internally converted to a specified URL using a

template before being handed to the XRootD POSIX subsystem.

You specify virtual mounts by setting the XROOTD_VMP environmental variable

to one or more templates that specify how to convert a path to a URL. The basic

format is shown below.

server[:port]:path[=[newpath]] [. . .]

Where:

server is the DNS name or IP address of the target server that would have been

specified in a URL.

port is the optional port number. If not specified, 1094 is assumed

path is the path prefix that is associated with server. It must start with a slash. Any

specified path whose prefix matches path causes the specified path to be prefixed

with “xrootd://server[:port]/” (i.e. an XRootD URL) and then vectored to the

server. This subject to what has been specified for the remainder of the

template.

= when a simple equals sign follows path, The path prefix (i.e. path) is removed

from the specified path before prefixing it with an XRootD URL.

newpath

when specified after the equals sign, newpath replaces path before prefixing it

with an XRootD URL.

You may specify any number of virtual mount point templates in the environmental

variable. Each one must be separated by a single space.

Proxy Service Configuration

Configuration 16-May-2019 49

6.4.1 Examples

XROOTD_VMP=xnode:/xrootd/

 /xrootd/home/abh is converted to xrootd://xnode:1094//xrootd/home/abh

XROOTD_VMP=xnode:2094:/xrootd/

 /xrootd/home/abh is converted to xrootd://xnode:2094//xrootd/home/abh

XROOTD_VMP=xnode:/xrootd/=/

 /xrootd/home/abh is converted to xrootd://xnode:1094//home/abh

XROOTD_VMP=xnode:2094:/xrootd/=/atlas/

 /xrootd/home/abh is converted to xrootd://xnode:1094//atlas/home/abh

Proxy Service Configuration

Configuration 16-May-2019 51

7 The netchk Utility

The netchk utility allows you to verify that an external client has a logical path to all

of the required nodes in proxy configuration. The syntax is:

netchk { ssh | tcp } dest

dest: [user@]host:port [dest]

Parameters

ssh only checks whether it is possible to ssh login through the dest host list.

tcp verifies that there is end-to-end message transitivity from the starting point

through the dest host list.

user the username to use when doing an ssh login to each host in dest. The default

is to use the current username.

host is a hostname or IP address that must be reachable. The first host in the list

must be reachable from the starting node where the netchk command is

issued. Each subsequent host in the dest list must be reachable from the

previous host in the dest list.

port the port number where messages must be sent to. This is typically the port

number for connects. This is only meaningful with tcp and the ssh parameter

ignores the port specification.

Notes

1) The starting node must have netchk available. No other node need have

netchk installed as the utility automatically but temporarily propagates

itself across all of the hosts in dest.

2) All nodes, including the issuing node, must have perl installed along with

the IO::Socket and IPC::Open2 packages.

3) All hosts in dest must have ssh installed and the command issuer (or

specified user) must have login access to each host in dest.

4) The netchk utility can be found in the utils directory of the xrootd

distribution or in the add-ons section of the xrootd.org main page.

Configuration Proxy Service

52 16-May-2019 Configuration

5) You should run netchk with the ssh parameter first to make sure there is a

clear ssh login path to all hosts in dest.

6) Since the goal of netchk is to make sure there is message transitivity

through all the listed hosts in dest using the ports that will be used by

various daemons, the listed port must be available for use. This essentially

means that the daemons that would normally use these ports must not be

running on he hosts listed in dest when netchk is started.

7) A full transitivity test consists of trying paths between an external public

node and all possible end-points.

Example

The following example tests whether there is appropriate transitivity between

the xrootd proxy server to be run at z.domain.edu and the redirector to be

run at x.domain.edu. Both servers will be using port 1024.

netchk tcp z.domain.edu:1094 x.domain.edu:1024

The test will make sure that the issuing node (which should be an external

public node) can connect to z.domain.edu:1024 and that z.domain.edu:1024

can connect to x.domain.edu:1024. Two-way messages are sent across the

connections to make sure they are not blocked.

Document Changes Configuration

Configuration 16-May-2019 53

8 Document Change History

16 Jun 2014

 Split description of proxy services from the ofs/oss manual. Hence, this

is a new manual.

 Document the caching proxy service.

29 Jul 2014

 Document forwarding proxies.

 Document the pss.origin directive that configures a forwarding proxy.

5 Aug 2014

 Document the pss.permit directive that restricts outgoing connections

of a forwarding proxy.

2 Dec 2014

 Document the disk caching proxy configuration directives (i.e. the ones

that start with pfc).

14 Feb 2015

 Change the “pfc.hdfs” prefixed directives to “pfc.file” prefixed

directives.

 Remove the pfc.chachedir directive.

11 Oct 2015

 Clarify the meaning of the high and low watermarks in the

pfc.diskusage directive .

11 Jan 2017

 Document version 2 of the disk caching proxy which includes new and

changed directives.

21 Mar 2017

 Correct pfc.ram directive (was incorrectly pss.ram).

 Document the –lfncache and –lfn2pfn pss.namelib directive options.

21 May 2017

 Describe automatic proxy selection via a client plug-in.

 Describe how disk caching proxy overloads may be handled.

Configuration Proxy Service

54 16-May-2019 Configuration

26 June 2017

 Describe how to cache S3-type objects.

28 June 2017

 Describe the pss.ciosync directive.

 Document the pss.config directive’s stream option.

 Document server-less caching

 Document XRootD POSIX interface.

18 September 2018

 Describe the enhanced pfc.diskusage directive.

16 May 2019

 Describe the pfc.writequeue directive.

 Describe the pss.ccmlib directive.

 Describe the pss.dca directive.

 Add section on Direct Cache Access.

