

Scalable Service Interface

13 February 2018

Andrew Hanushevsky

ii 13-February-2018 SSI Reference

©2003-2018 by the Board of Trustees of the Leland Stanford, Jr., University

All Rights Reserved

Produced under contract DE-AC02-76-SFO0515 with the Department of Energy
This code is open-sourced under a GNU Lesser General Public license.

For LGPL terms and conditions see http://www.gnu.org/licenses/

http://www.gnu.org/licenses/

Scalable Service Interface Contents

SSI Reference 13-February-2018 iii

1 Introduction.. 5

1.1 Key Concepts ..6

1.2 Key Classes ...7

1.3 Callbacks, Threads, and Mutexes ..8

1.4 Security ...8

2 The SSI Client.. 9

2.1 Step 1: Obtain a Service Provider...9

2.2 Step 2: Define a Resource ...10

2.2.1 Resource Names ... 10

2.2.2 Reusable Resources .. 10

2.2.3 Resource Affinity ... 11

2.2.4 Esoteric Resource Options .. 13

2.3 Step 3: Derive a Request Class ...15

2.4 Step 4: Initiate a Request ..17

2.4.1 Initiating a Detached Request .. 18

2.5 Step 5: Process the response ...19

2.5.1 Obtaining Optional Metadata Ahead of the Response............................... 22

2.5.2 Handling a Metadata-Only Response ... 22

2.5.3 Handling an isHandle Response ... 23

2.5.4 Fielding Alert Messages .. 23

2.5.5 Pacing Data Responses .. 24

2.6 Step 6: Finish or Cancel the Request ..25

2.7 Deleting Client-Side Objects ..26

2.7.1 XrdSsiService Object .. 26

2.7.2 XrdSsiResource Object... 26

2.7.3 XrdSsiRequest Object... 26

3 The SSI Server ... 27

3.1 Step 1: Define the Service Provider..27

3.1.1 XrdSsiProvider::Init() Arguments ... 30

3.1.2 XrdSsiProvider::QueryResource() Arguments and Return Values 31

3.2 Step 2: Derive a Service Class ..32

3.2.1 Performing Authorization via Prepare() .. 33

3.2.2 Performing Resource Optimization via Prepare()....................................... 34

3.3 Step 3: Process a Request..35

3.3.1 Detached Requests ... 40

3.4 Step 4: Post the response ..43

3.4.1 Sending Optional Metadata Ahead of the Response 44

3.4.2 Sending Alerts .. 44

Contents Contents

iv 13-February-2018 SSI Reference

3.5 Step 7: Finish or Cancel the Request.. 47

3.5.1 Normal Request Completion.. 47

3.5.2 Request Cancellation ... 48

3.6 Deleting Server-Side Objects.. 48

3.6.1 XrdSsiService Object .. 48

3.6.2 XrdSsiStream Object .. 48

3.7 Overall Flow Summary .. 49

4 XrdSsiStream ... 51

4.1 Relationship to other classes .. 51

4.2 Object Persistence ... 52

4.3 Streaming Request-Response Sequence 52

4.3.1 Active Streams .. 56

4.3.1.1 Active Stream Impedance Matching ... 57

4.3.2 Passive Streams .. 58
4.3.2.1 Passive Stream Impedance Matching ... 59

5 Clustering SSI Servers .. 61

5.1 Define the Service Provider for the cmsd.................................... 62

6 Client Configuration ... 65

6.1 Number of threads ... 65

6.2 Default Timeouts .. 65

6.3 Request Timeout .. 66

7 Server Configuration... 67

7.1 Resource Name Configuration .. 67

7.2 Unclustered XRootD SSI Configuration 68

7.3 Clustered XRootD SSI Configuration .. 69

7.4 Separating SSI and XRootD Resource Names 70

7.5 SSI Specific Directives .. 71

7.5.1 fspath.. 71

7.5.2 opts ... 73
7.5.2.1 Optimizing Large Request Sizes.. 74

7.5.3 svclib (required) ... 75

7.5.4 trace .. 76

8 Managing Resources in a Cluster .. 77

8.1 Registering and Unregistering Resource Names 77

8.2 Synchronizing resources availability between SSI processes 78

8.3 Suspending and Resuming Service ... 79

9 Starting the SSI Server.. 81

10 Document Change History... 83

Scalable Service Interface Reference

SSI Reference 13-February-2018 5

1 Introduction
This document describes the Scalable Service Interface (SSI) component of the

XRootD framework. The SSI is a multi-threaded XRootD plug-in that implements a

request-response framework. Using this framework you can write client applications

that issue arbitrary requests to a server that executes the request and then responds

with a result. Since the framework is based on XRootD, all of the base features

available to any XRootD plug-in are available to be used by SSI. This includes

server clustering which allows you to cluster an unlimited number of servers to

achieve horizontal scaling.

Additionally, all of the actions taken by the framework that may involve a delay are

asynchronous using a callback mechanism for serialization. That is, when an action

is taken that may involve a delay, it is launched in the background and the requestor

is told that the results of the action will be made available when a requestor-

provided callback is invoked. This minimizes the number of threads needed to

implement a service as the thread requesting an action is free to do other work while

the action is executed. This maximizes scaling within a process.

The SSI framework implements a remote object execution model. In this model,

actions taken by the client, such as object creation, are symmetrically performed at

the server. In this model client actions appear, to the extent possible, to occur locally

while the actual execution is remote. This simplifies writing complex client-server

interactions and normally very little framework code is needed to implement a

request/multiple-response service.

While SSI is implemented using XRootD protocol, the SSI related classes do not

expose any XRootD dependencies. Thus, it is possible to port the framework to most

other protocols without impacting existing service applications.

Referemce Scalable Service Interface

6 13-February-2018 SSI Reference

1.1 Key Concepts

The SSI is an object based framework using the following key concepts:

 a service provider,

 one or more services,

 one or more resources,

 one or more requests, and

 request responders.

A service provider is responsible for creating a service. When a service is created, the

initial point of contact (i.e. host and port) must be specified. The initial point of a

contact can be a single node or the head node of a node cluster. Hence, a servic e is

tied to one or more nodes hosting the service. There can be any number of services,

each with its own unique set of resources. Usually, there is only one type of service.

A resource is an abstract name of some capability offered by a service. It is up to the

implementation to assign names to particular resources available via a service. The

resource simply identifies what future requests will be using along with possible

restrictions.

Once a service is created, one or more requests using the resource can be executed

within the context of the service.

The request responders are a server-side concept needed to send a response in the

context of a specific request. A response can be:

 fixed amount of arbitrary data,

 an arbitrary amount of streamed data,

 a file, or

 an error message.

The server side service implementation determines the appropriate response.

In its simplest form, resources can be provided by a single server. That server is

responsible for processing requests and providing responses. The next few sections

assume such a setup as it is simpler to explain the object interactions using a single

server. A more complex scheme is a setup of several servers with a mixture of

resources, some replicated and some not, configured in a cluster. The concepts

presented in the simple case apply to clustered servers with some additional classes

to manage the cluster. This is covered later.

Scalable Service Interface Reference

SSI Reference 13-February-2018 7

1.2 Key Classes

The following table outlines the classes used on the client as well as the server. In

most cases these are the same. It is best to read the detail header file comments on

how to use the classes. Examples shown in this document do not necessarily show

all possible options.

Class Header Client Server Comments

XrdSsiCluster XrdSsiCluster.hh n/a opt Effects cluster actions

XrdSsiEntity XrdSsiEntity.hh n/a opt Describes an incoming

client

XrdSsiErrInfo XrdSsiErrInfo.hh Y Y Describes any error

XrdSsiLogger XrdSsiLogger.hh n/a opt Routes log messages

XrdSsiProvider XrdSsiProvider.hh Y Y Service factory

XrdSsiRequest XrdSsiRequest.hh Y Y Embodies a client

request

XrdSsiResource XrdSsiResource.hh Y Y Describes a resource

XrdSsiRespInfo XrdSsiRespInfo.hh Y Y Actual response

XrdSsiResponder XrdSsiResponder.hh n/a Y Responds to a request

XrdSsiService XrdSsiService.hh Y Y Describes a service

XrdSsiStream XrdSsiStream.hh opt opt Streams response data

In the table above, “n/a” indicates the class is not applicable in the given context and

“opt” indicates that the class is optional in the given context (i.e. it may not be

needed, depending on the service being provided).

Implementing a client that uses an existing service provider is the simplest way to

start. The following sections provide a client-side example and show how actions on

the client are reflected on a server. This provides a clear explanation on how to use

these classes on a client and can be used to guide a remote service implementation.

This will be augmented in following sections that guide you through implementing

a simple remote service.

Referemce Scalable Service Interface

8 13-February-2018 SSI Reference

1.3 Callbacks, Threads, and Mutexes

Programming in a callback-centric environment, while not difficult, can be

challenging. This is because the callback is not only asynchronous, meaning it can

happen at any time, there is no guarantee whether or not a separate thread is used to

effect the callback. For instance, when a thread calls an SSI method that method

may perform an immediate callback using the calling thread. If the caller is holding

a mutex that must also be locked in the callback method, a deadlock will occur.

To avoid such scenarios do one of the following:

 do not hold any mutexes when calling any SSI method that responds with a

callback, or

 use recursive mutexes.

Following this simple formula will avoid hours of debugging time.

1.4 Security

The full XRootD authentication suite is available for use with the SSI framework. By

default, no authentication is configured. Refer to the “XRootD Security Configuration

Reference” enable authentication as well as request verification to prevent man-in-

the-middle attacks. Authorization possibilities are detailed in the authorization

section of this document.

Scalable Service Interface Reference

SSI Reference 13-February-2018 9

2 The SSI Client

In a client application, the SSI framework already provides a service that allows the

client to use remote service providers. This service merely coordinates the

interactions between the client and the remote server and should be viewed as

simply an extension of the remote service provider itself. In order to get access to

client-side service coordinator the application must link with libXrdSsiLib.so that

contains the framework implementation.

2.1 Step 1: Obtain a Service Provider

The first step is to obtain a service object that corresponds to a service provider. This

is done using the built-in provider object. The following code fragment shows how

to do this.

#include “XrdSsi/XrdSsiProvider.hh”

#include “XrdSsi/XrdSsiService.hh”

extern XrdSsiProvider *XrdSsiProviderClient;

 XrdSsiErrInfo eInfo;

 XrdSsiService *theSP;

 std::string contact(“somehost:1234”);

theSP = XrdSsiProviderClient->GetService(XrdSsiErrInfo eInfo,

 contact);

if (!theSP) {…} // eInfo has the reason for the failure

Here, contact is a string that holds the location of the service (e.g. hostname:port) such

as “somehost:1234”. This is the initial point of contact for future requests. The initial

point of contact is not validated at this time. However, other errors may occur that

cause the call to return a nil pointer. If a nil pointer is returned the eInfo object

contains an error message along with an errno value describing why the call failed.

At this point the client is able to execute requests using the returned service object.

Referemce Scalable Service Interface

10 13-February-2018 SSI Reference

2.2 Step 2: Define a Resource

The next step is to instnatiate a resource. Resources are instantiated using the

XrdSsiResource class (see the XrdSsiResource.hh header file). The resource object is

handed off to the service obtained in step 1 along with a request object. A simple

resource definition is shown below.

// Define a simple resource call “/mysql”.

//

XrdSsiResource theResource(“/mysql”);

2.2.1 Resource Names

While resource names are arbitrary, by default they must start with a slash. It is

possible to configure an XRootD server to accept names without a leading slash. The

configuration options are covered under configuring resource names.

2.2.2 Reusable Resources

A reusable resource is one which can be used to bypass request resource setup

overhead for subsequent requests using that resource. Reusable resources make

sense when SSI servers are not clustered or, if clustered, resources are neither

replicated nor migrated from server to server. Essentially, a reusable resource

represents a service context for all requests that use that resource. Because reusable

resources are cached, resource setup occurs only once, avoiding setup overhead.

You designate a resource as reusable by setting XrdSsiResource::Reusable in the

XrdSsiResource::rOpts member. You control the lifetime of a reusable resource

using the XrdSsiResource::Discard flag; which may also be set in rOpts. When

ProcessRequest() sees that either option is set, it performs the following actions:

 A resource key is created by concatenating XrdSsiResource::rUser with

XrdSsiResource::rName.

 A resource cache lookup is done using the key.

 If the resource is found in the cache but Discard has been set, it is removed

from the cache.

 If the resource was either not found or discarded, a new resource context is

created.

 If the Resuable option is set, the new context is inserted into the cache.

Scalable Service Interface Reference

SSI Reference 13-February-2018 11

You should see that this processing logic uses a cached resource context, a refreshed

cached resource context, or a new resource context if neither flag is set. You set the

Discard flag to either remove a cached resource or refresh it, typically after a

permanent error is returned. You should use Discard sparingly. Do not specify both

flags for every request as the setting would be equivalent to specifying neither flag

except for adding additional overhead to each request.

Since only the rUser and rName determine whether or not resource context is

reused, you cannot send new rInfo information to the server via a reusable resource

as this information is relayed only when the resource context is created.

2.2.3 Resource Affinity

Resource affinity is only relevant when you cluster SSI servers. If you are not

clustering SSI servers then you can ignore this section.

In a clustered environment, if more than one server can provide a resource, the SSI

framework tries to load balance requests across all of the servers that provide a

requested resource. For certain types of requests this may be a disadvantage. For

instance, say the start-up cost for request of type X is high so it would make more

sense to always run the same type of request on the same server where the original

type X resource landed. Or say that the same kind of requests always run

symbiotically better when they run together on the same server. In this case, all such

requests should be scheduled together.

Resource affinity provides you a way of requesting that requests using a certain

resource run on the same server, if at all possible. You specify resource affinity

requirements in the XrdSsiResource object setting an enum Affinity value in the

XrdSsiResource:: affinity member. The following table describes the possible

choices in ascending strength.

Referemce Scalable Service Interface

12 13-February-2018 SSI Reference

Affinity Meaning

Default Use affinity configured for the cluster’s redirector. This is the default.

None The resource has no affinity. Any server can be selected.

Weak Run requests using this resource on same server if doing so does not

involve a scheduling delay. Otherwise, any server will do

Strong Run requests using this resource on same server even if doing so

involves a scheduling delay.

Strict Always run requests using this resource on same server regardless of

any overhead in doing so.

The cluster’s redirector determines which server to select for a request based on the

resource name. The assumption is that more than one server may have the resource.

Consequently, the redirector must determine all of the servers that have the resource

to consistently use only one of them. This may take some time. You control how

much you are willing to wait by specifying the strength of the affinity you want. The

stronger the affinity, the more likely the same server will always be used. Usually,

delays only occur on the first use of the resource. So, a weak affinity may cause two

or three requests to go to different servers but subsequent requests will normally go

to the same server.

Once affinity is established, the cluster’s redirector will use the same server for all

requests using the resource as long as affinity is specified. Should that server fail, an

alternate server is selected to be the point of affinity. That server remains the point

of affinity for the resource even if the original server comes back.

If you have more than one redirector, you should configure them in load balance

mode. This is the only way a cluster of redirectors can maintain consistent affinity

for a particular resource.

Default resource affinity is specified as part of the cmsd configuration using the

cms.sched directive. Refer to the “Cluster Management Service Configuration Reference”

for more information.

Scalable Service Interface Reference

SSI Reference 13-February-2018 13

2.2.4 Esoteric Resource Options

Additional resource options are available. Some only apply to clustered

environments. The esoteric options are:

XrdSsiResource::hAvoid

This option only is meaningful in a clustered environment. It specifies a list of

comma separated host names or IP addresses of servers you do not want to

use when selecting a server to handle the request using the particular

resource. Be aware, that if the resource is only available on one of the servers

in the list, the request fails.

XrdSsiResource::rInfo

This option allows you to send additional out-of-band information to the

server that will be executing the request. The information should be specified

in CGI format (i.e. key=value[&key=value[…]]). This information is supplied

to the server-side service in its corresponding request resource object. Note

that restrictions apply for reusable resources.

XrdSsiResource::rUser

This is an arbitrary string that is meant to further identify the request. The

SSI framework normally uses this information to tag log messages. It is also

supplied to the server-side service in its corresponding request resource

object.

Scalable Service Interface Reference

SSI Reference 13-February-2018 15

2.3 Step 3: Derive a Request Class

The request object must be defined as a derivation of the abstract XrdSsiRequest

class. This is because it also has an abstract callback method (i.e. ProcessResponse()

and optionally ProcessResponseData()) as well as an abstract method for the

framework to obtain the request data (i.e. GetRequest() and optionally,

RelRequestBuffer() and Alert()) to be sent to the server via the service object. The

following minimal code snippet shows an example of how to do that.

#include “XrdSsi/XrdSsiRequest.hh”

class myRequest : public XrdSsiRequest

{

public:

virtual char *GetRequest(int &dlen)

 {dlen = reqBLen; return reqBuff;}

virtual bool ProcessResponse(const XrdSsiErrInfo &eInfo,

 const XrdSsiRespInfo &rInfo);

virtual void ProcessResponseData(char *buff, int blen,

 bool last);

 myRequest(char *buff, int blen)

 : reqBuff(buff), reqBLen(blen) {}

virtual ~myRequest{} {}

private:

char *reqBuff;

int reqBLen;

};

bool myRequest::ProcessResponse(const XrdSsiErrInfo &eInfo,

 const XrdSsiRespInfo &rInfo);

{

 if (eInfo.hasError()) {…} // eInfo has the failure reason

 else {…} // rInfo holds the response

 return true;

}

void myRequest::ProcessResponseData(char *buff, int blen,

 bool last)

{…} // Example implementation shown later

Referemce Scalable Service Interface

16 13-February-2018 SSI Reference

Here we define the GetRrequest() method to simply return the pointer to the buffer

holding the request data and the length of the request data. It is up to the

implementation to create request data, save it in some manner, and provide it to the

framework when GetRequest() is called. The optional RelRequestBuffer() method

can be used to minimize memory usage as it is called once the framework no longer

needs access to the request data (see the header file for details). How you generate

the request data or supply it to the GetRequest() call is up to you. However, be

aware that the thread used to initiate a request may be the same one used in the

GetRequest() call and this may affect your implementation choice.

Since a request is asynchronously sent to a server via the service object, the

ProcessResponse() callback method is used to inform the request object that the

request completed or failed. At that point you are assured that a response is actually

ready. This method is called on a new thread.

The optional ProcessReesponseData() is another callback method that is used in

conjunction with the request’s GetReesponseData() method or when the response is

a data stream and you wish to asynchronously receive data via the stream. Most,

but not all, applications will need to implement a ProcessReesponseData() method

since a) it is more convenient to use ProcessReesponseData(), and b) scalable

applications generally require that any large amount of data be asynchronously

received. Hence, the example shows an implementation of ProcessReesponseData().

The next step involves issuing a request. The details of handling the response are

covered afterwards.

Scalable Service Interface Reference

SSI Reference 13-February-2018 17

2.4 Step 4: Initiate a Request

Requests are always executed in the context of a service. Your requests need to

correspond to what the service allows. Violating that will likely return an error.

Based on the preceding steps, the following code fragment shows how to initiate a

request.

#include “XrdSsi/XrdSsiRequest.hh”

XrdSsiService *servP; // Obtained via XrdSsiProvider

XrdSsiRequest *theRequest; // Used for demonstration purposes

XrdSsiResource theResource(“/mysql”);

// Create a request object (upcast from your implementation)

//

theRequest = new myRequest(reqData, reqDLen);

// Hand off the request to the service object

//

servP->ProcessRequest(*theRequest, theResource);

// The thread is now free to do anything it wants!

Once you call ProcessRequest() you are effectively transferring control of the

request object to the service object. This means

 you must not alter or delete the request data until after RelRequestBuffer()

method is called. If you have not implemented this method, then you must

not alter or delete the request data until the ProcessResponse() callback is

invoked.

 You must not delete the request object before the request is finished (see

finishing a request). This also applies to the request data if you did not

implement a RelRequestBuffer() method.

Object ownership is used by the SSI framework to minimize data copying.

Referemce Scalable Service Interface

18 13-February-2018 SSI Reference

2.4.1 Initiating a Detached Request

Depending on the configuration, you may specify that a request run in a detached

state. When a request is detached, it does not need a live TCP connection to execute.

However, it may only stay in a detached state for a limited amount of time before

being automatically cancelled.

You specify that you want the request to be detached by setting the detach time-to-

live value in the request object to something greater than zero using the

XrdSSiRequest:: SetDetachTTL() protected method. The method’s argument

specifies the maximum number of seconds that the request may stay detached. It

must be set before you call XrdSsiService::ProcessRequest(). The default requires

that the request run attached (i.e. detach time limit is zero).

Once the request is accepted for processing on a remote server, the

ProcessResponse() callback is invoked with a response type of isHandle. The

response is the handle you should use to attach to the request either on the same

host or from anywhere else by passing the handle to the XrdSsiService::Attach()

method. Therefore, you should save the handle and use it when you wish to reap

the request’s response as well as any pending alert messages.

The Attach() method requires that you not only give it the handle but also a request

object to use. It need not be the same request object you used to initiate the request.

It is needed in order to establish the set of callbacks and other methods required to

process the response.

Be aware that detached requests may be prohibited or restricted, depending on the

server‘s configuration.

Scalable Service Interface Reference

SSI Reference 13-February-2018 19

2.5 Step 5: Process the response

After a server process the request it responds with the result. The response is always

contained in the XrdSsiRespInfo object, a private member in the XrdSsiRequest

object. That XrdSsiRespInfo object is passed to your implementation of

ProcessResponse(). The following table lists all the possible response types you may

receive relative to the object’s member contents.

rType is buff blen eMsg eNum strmP

isData data buffer buffer length n/a n/a n/a

isError n/a n/a message errno n/a

isHandle handle handle size n/a n/a n/a

isStream n/a n/a n/a n/a XrdSsiStream

object

There are only three possible types of response that a client may see:

 a data buffer when XrdSsiRespInfo::rType is set to isData,

 an error when XrdSsiRespInfo::rType is set to isError,

 a detached request handle when XrdSsiRespInfo::rType is set to isHandle, or

 a data stream when XrdSsiRespInfo::rType is set to isStream.

When the response is an error, the error information is contained in the

XrdSsiErrInfo passed to the callback. You can check XrdSsiRespInfo::rType or use

the XrdSsiErrInfo::HasError() method to verify whether or not an error has

occurred.

A special response type of isHandle is returned when a detached request has been

successfully initiated. Handling this response type is covered under isHandle

responses.

Otherwise, the only other possible response is actual data that the server sent. That

data is provided to the client either directly via a buffer or via a stream object.

If the response type is isData then you should directly access the RespInfo buff and

blen members to extract the response without copying data (i.e. using

GetResponseData() for an isData response causes the response data to be copied). If

the response type is isStream then you can use GetResponseData() or directly use

the XrdSsiStream methods in the returned stream object via the

XrdSsiRespInfo::strmP member (either approach is equally efficient).

Referemce Scalable Service Interface

20 13-February-2018 SSI Reference

That said, it is easier to use the GetResponseData() method, as shown below. It

allows you to avoid dealing with the details of the response type. Should you wish

to directly use the stream object, see the description of this object either in its header

file or refer to the section explaining streams.

#include “XrdSsi/XrdSsiRequest.hh”

bool myRequest::ProcessResponse(const XrdSsiErrInfo &eInfo,

 const XrdSsiRespInfo &rInfo)

{static const int myBSize = 1024;

 if (eInfo.isOK()) {char *myBuff = malloc(myBSize);

 GetResponseData(myBuff, myBSize);

 }

 else {/* Handle error using the passed eInfo object */

 Finished(); // You can now do a “delete this”

 }

return true;

}

The previous code snippet shows a simple response handler. Notice that when the

eInfo.isOK() returns false then the response is an error (i.e. rInfo.rType == isError).

Otherwise, the response is data via a buffer or a stream. In the example, we allocate

a data buffer of some arbitrary size and call GetResponseData() passing it the buffer

and its size. The response data will be placed in the buffer. How you actually handle

response data buffer is up to you. In any case, you should always return true.

Once response data is placed in your buffer the request object’s

ProcessResponseData() method is called. You need to implement this method as

part of your request object. A sample implementation is shown below.

Scalable Service Interface Reference

SSI Reference 13-February-2018 21

#include “XrdSsi/XrdSsiRequest.hh”

XrdSsiRequest::PRD_Xeq myRequest::ProcessResponseData

 (char *myBuff, int myBLen, bool isLast)

{

static const int myBSize = 1024;

// Process the response data of length myBLen placed in myBuff

// If there is more data then get it, else free the buffer and

// indicate to the framework that we are done

//

if (!isLast) GetResponseData(myBuff, myBSize);

 else {free(myBuff);

 Finished(); //You can now do a “delete this”

 }

return XrdSsiRequest::PRD_Normal;

}

The ProcessResponseData() method is passed the original buffer you supplied to

GetResponseData() as well as the amount of data placed in the buffer. If you want

to reuse this buffer you will need to track its size in a better way than shown. The

isLast argument is set to true to indicate that there is no more response data.

Otherwise, the supplied buffer was not large enough to contain all of the data and

you can call GetResponseData() again to obtain it.

Be aware that the data response may zero-length. This can happen when the

response only contains metadata or your service has no relevant response data. See

the section “Metadata-Only Response”.

The examples show that after the response is handled the request’s Finished()

method is called. This is a critical call and is explained in the section titled “Finish or

Cancel the Request”. Keep in mind that once Finished() is called, you must not

reference any XrdSsiRespInfo object members as these are deleted as part of

finishing the request.

Additionally, ProcessResponseData() must return one of the PRD_Xeq enums

defined in XrdSsiRequest. Typically, PRD_Normal is always returned to indicate

that normal post-processing is desired. It is possible to return an indication that the

callback is to be held. This is covered under Pacing Responses.

Referemce Scalable Service Interface

22 13-February-2018 SSI Reference

2.5.1 Obtaining Optional Metadata Ahead of the Response

The SSI framework allows a server to send metadata ahead of the response data.

This metadata may be used for any purpose. For instance, the metadata may

describe the response so that it can be handled in the most optimum way.

You obtain any sent metadata with the XrdSsiRequest::GetMetadata() method

using the request object associated with the response. Typically, you should get

metadata in the ProcessResponse callback method before you issue

XrdSsiRequest::GetResponseData().

The metadata, if any, is persistent until you call XrdSsiRequest::Finished() method.

After that call you must not reference the buffer holding the metadata.

2.5.2 Handling a Metadata-Only Response

The SSI framework allows a server to send only metadata as a response (i.e. the

response only consists of metadata). This is useful for sending short responses and

avoiding additional client-server handshakes to determine that there is no actual

response data other than the metadata. A metadata-only response is indicated when

the response type is isData and the length of the data is zero.

There is no hard and fast rule in using metadata-only responses to avoid

communication overhead. The SSI framework tries to avoid such overhead for

relatively small data responses as well.

You obtain any sent metadata with the XrdSsiRequest::GetMetadata() method

using the request object associated with the response. Typically, you should get

metadata in the ProcessResponse callback method. You should not call

XrdSsiRequest::GetResponseData() as there is no other response data to be

received. A metadata-only response is indicated when XrdSsiRespInfo::rType is set

to isNil (i.e. no response data is present).

The metadata, if any, is persistent until you call XrdSsiRequest::Finished() method.

After that call you must not reference the buffer holding the metadata.

Scalable Service Interface Reference

SSI Reference 13-February-2018 23

2.5.3 Handling an isHandle Response

You get a isHandle response only when a detached request was accepted for

processing on a remote server. The handle is used to reattach the request to a request

object. The handle is an ASCII null-terminated string whose length includes the null

character. You should copy the handle and then call Finished() to cleanup

processing. See the section on initiating detached requests on how to use the handle.

2.5.4 Fielding Alert Messages

This SSI framework allows a server to send one or more alert messages. The format

and meaning of an alert is strictly what you define it to be. Generally, alert messages

should be short notification but practically there really is no restriction on how you

use alerts.

You should supply an implementation of XrdSsiRequest::Alert() virtual method in

order to accept alerts. This method is called whenever a server send your request an

alert message. The default implementation ignores alert messages.

The Alert() method is called with a XrdSsiRespInfoMsg object. The object

encapsulates the alert message. Once you have received and processed an alert

message you should call XrdSsiRespInfoMsg::Recycle() to release resources

allocated to the message. Failure to do so creates a memory leak. Details on the

XrdSsiRespInfoMsg class can be found in the public XrdSsiRespInfo.hh header

file.

An example on an Alert() method implementation is shown below.

#include “XrdSsi/XrdSsiRequest.hh”

class myRequest : public XrdSsiRequest

{

public:

virtual void Alert(XrdSsiRespInfoMsg &aMsg)

 {int aMsgLen;

 char *aMsgData = aMsg.GetMsg(aMsgLen);

 // Process the alert then recycle the msg

 aMsg.Recycle();

 }

 // The remainder of your class definition

};

Referemce Scalable Service Interface

24 13-February-2018 SSI Reference

2.5.5 Pacing Data Responses

If you need to delay handling response data (e.g. it is too large relative to other

things that need to occur), the SSI framework allows you to postpone the

ProcessResponseData() callback to a later time. You do this by returning

XrdSsiRequest::PRD_Hold

The callback is placed in a global hold queue and releases the thread for other

work. Responses in the queue are restarted upon request in FIFO order.

XrdSsiRequest::PRD_HoldLcl

The callback is placed in a local queue associated with the request identifier

passed to the XrdSsiRequest constructor when the request object was

allocated. If there is no request identifier, the callback is placed in the global

queue. Responses in the queue are restarted upon request in FIFO order.

Calling the static method XrdSsiRequest::RestartDataResponse() restarts one or

more ProcessResponseData() callbacks. The method accepts the number callbacks to

restart and an optional request identifier. If a request identifier is not specified, the

global queue is used. Otherwise, the queue associated with the specified request

identifier is used.

When the ProcessResponseData() callback is restarted it is called with the same

arguments before it was suspended.

Scalable Service Interface Reference

SSI Reference 13-February-2018 25

2.6 Step 6: Finish or Cancel the Request

Recall that when you passed your request object to the service’s ProcessRequest()

method, ownership of the object transferred to the service object and you were not

allowed to delete the request object. The request’s Finished() method (supplied by

the framework) is used to regain control of the object. It may be called at any time

after the return from XrSsiService::ProcessRequest() but it must be called and called

only once. When you call Finished() before the response is fully processed (i.e.

before your ProcessResponse() method is called or there is still outstanding

response data) the request is considered to be cancelled. Good programming

practice requires that you explicitly indicate cancellation by passing true as an

argument to Finished(). When Finished is improperly called, it returns false to

indicate that it is likely that your program has a logic error. Otherwise, it returns

true.

#include “XrdSsi/XrdSsiRequest.hh”

if (!Finished()) abort()

 else delete this;

In the above code snipped, calling Finished() returns ownership of the request

object back to the caller. At this point you can delete the request object. If your

request objects are uniform you should consider reusing them to avoid repeated

object allocations.

You should also be aware that when you use Finished() to cancel a request, the

cancellation is not guaranteed to be reflected to the server. This occurs when, from

the server’s perspective, the request has indeed finished because all remaining

response data is already in transit.

Referemce Scalable Service Interface

26 13-February-2018 SSI Reference

2.7 Deleting Client-Side Objects

The following rules apply to safely delete the client-side objects described in the

previous sections.

2.7.1 XrdSsiService Object

The XrdSsiService object cannot be explicitly deleted. To delete this object you must

call its Stop() method which deletes the object if it is safe to do so. A service object

can only be deleted after all requests handed to the object have completed (i.e.

Finished() has been called on each request). Any attempt to stop the service while

there are still outstanding requests causes the Stop() method to return false and the

object is not deleted.

2.7.2 XrdSsiResource Object

The resource object may only be deleted after XrdSsiService::ProcessRequest()

method returns.

2.7.3 XrdSsiRequest Object

The request object can only be deleted after its Finished() method has been called.

Unlike other objects, there is no safeguard from deleting the object prior to calling

Finished(). Violating this rule is likely to cause an invalid memory reference.

Scalable Service Interface Reference

SSI Reference 13-February-2018 27

3 The SSI Server

In a server, the SSI framework loads your service application as a plug-in. This

means your code needs to be packaged as a dynamically loadable shared library.

Referencing the previous flow summary, it should become apparent that actions

taken by the client are essentially recreated on the server. The following sections

explain what the service application needs to provide.

3.1 Step 1: Define the Service Provider

Server-side services are provided via the XrdSsiProvider object. While the client-

side has one that is built-in the server-side must define one. There are actually two

types of processes:

 A cmsd process needs only to ascertain whether or not a resource is available

on the node on which its QueryResource() method is called, and

 A xrootd process that actually provides the service via the GetService()

method. The process still needs to be able to ascertain resource availability.

This section only describes the xrootd process. You need not have a cmsd process if

you are not clustering your servers. Defining a resource lookup provider for a

clustered environment is described in a subsequent section.

The service provider is used by xrootd to actually process client requests. The

service provider object is pointed to by the global pointer XrdSsiProviderServer

which you must define and set at library load time (i.e. it is a file level global static

symbol).

When your library is loaded, the XrdSsiProviderServer symbol is located in the

library. Initialization fails if the appropriate symbol cannot be found or it is a nil

pointer.

The three methods that you must implement in your derived XrdSsiProvider object

are:

 GetService(),

 Init(), and

 QueryResource()

The QueryResource() method is used to obtain the availability of a resource. This

method may be called whenever the client asks for the resource status. The

Referemce Scalable Service Interface

28 13-February-2018 SSI Reference

following code snippet shows how you would typica lly define the provider pointer

at file level.

#include “XrdSsi/XrdSsiProvider.hh”

class MyServerProvider : public XrdSsiProvider {};

XrdSsiProvider *XrdSsiProviderServer = new MyServerProvider;

Once the provider object is found, its Init() method is called. The method should

initialize the object for its intended use. Subsequently, a one-time call is made to its

GetService() method to obtain an instance of an XrdSsiService object.

The following page shows a sample derivation of an XrdSsiProvider class. Note

that it implements two pure abstract methods: GetService() and QueryResource().

Scalable Service Interface Reference

SSI Reference 13-February-2018 29

#include “XrdSsi/XrdSsiProvider.hh”

#include “XrdSsi/XrdSsiService.hh”

class myServceProvider : public XrdSsiProvider

{

public:

// The GetService() method must supply a service object

//

XrdSsiService *GetService(XrdSsiErrInfo &eInfo,

 const std::string &contact,

 unsigned int oHold=256

);

// Init() is always called before any other method

//

bool Init(XrdSsiLogger *logP,

 XrdSsiCluster *clsP,

 const std::string cfgFn,

 const std::string parms,

 int argc, char **argv

) {

initOK = true; // If all went well

 return initOK;

 }

// The QueryResource() method determines resource availability

//

XrdSsiProvider::

rStat QueryResource(const char *rName,

 const char *contact=0

);

 myServiceProvider() : initOK(false);

virtual ~myServiceProvider() {}

private:

bool initOK;

};

Referemce Scalable Service Interface

30 13-February-2018 SSI Reference

3.1.1 XrdSsiProvider::Init() Arguments

The Init() method is called once after your shared library is loaded and before any

other calls. The arguments that may be of interest are:

XrdSsiLogger *logP

logP points to a generalized message routing object. You can use this object to

include messages in the framework log file. Messages are automatically

prefixed with a time stamp and, when relevant, the thread ID issuing he

message. See XrdSsiLogger.hh include file for full details.

XrdSsiCluster *clsP

clsP points to an object that is used to control server selection and manage

resources that the server may have. It is only relevant in a clustered

environment. Cluster management relative to this object is described later.

const std::string cfgFn

cfgFn holds the name of the configuration file used to initialize the server.

You can add your own directives to this configuration file and parse them out

during initialization. This allows you to have a single configuration file.

const std::string parms

parms, if not nil, are inline parameters specified on the directive that identified

your shared library. Passing parameters in this way is purely optional.

int argc, char **argv

The argc and argv parameters have the same use as the ones passed to main().

However, these command line arguments have been filtered out to only

contain arguments specific to your plug-in. Refer to the section on starting

SSI daemons for more information.

Scalable Service Interface Reference

SSI Reference 13-February-2018 31

3.1.2 XrdSsiProvider::QueryResource() Arguments and Return Values

Whenever an SSI daemon needs to know the status of a resource it calls

QueryResource(). This is true of the xrootd and, in a clustered environment, the

cmsd. The argument, rname, passed is exactly the same as specified by the client

when it created a derived instance of the XrdSsiResource object in order to use

named resource. The QueryResource() method should return one of three values:

XrdSsiProvider::notPresent

The return value indicates that the resource does not exist.

XrdSsiProvider::isPresent

The return value indicates that the resource exists.

XrdSsiProvider::isPending

The return value indicates that the resource exists but is not immediately

available. This is only useful in clustered environments where the resource

may be immediately available on some other node.

The second argument, contact, is always nil for a server. It is only used by a client

initiated query for a resource at a particular endpoint.

Referemce Scalable Service Interface

32 13-February-2018 SSI Reference

3.2 Step 2: Derive a Service Class

The provider object supplies a service object via the GetService() method. While the

client has the option of obtaining multiple service objects, one for each service

supplier end-point; that is meaningless for a particular server since, from the SSI

framework’s viewpoint, there can only be one service relative to an end-point.

Regardless, you must supply such a service object. Below is a sample derivation of a

XrdSsiService class.

#include “XrdSsi/XrdSsiProvider.hh”

#include “XrdSsi/XrdSsiService.hh”

class myService : public XrdSsiService

{

public:

virtual void ProcessRequest(XrdSsiRequest &reqRef,

 XrdSsiResource &resRef)

 {// Do whatever is needed by the request

 // relative to the specified resource.

 }

 myService() {…}

virtual ~myService() {…}

};

You must implement the pure abstract method ProcessRequest(). This method is

called when the client calls ProcessRequest() to hand off its request and resource

objects. Essentially, the client’s request and resource objects are transmitted to the

server and passed into the service’s ProcessRequest() method.

Two additional virtual methods:

 Attach(), optimize handling of detached requests and

 Prepare() to and perform preauthorization and resource optimization.

These are explained in the subsequent sections.

Scalable Service Interface Reference

SSI Reference 13-February-2018 33

3.2.1 Performing Authorization via Prepare()

As part of the request setup, the SSI framework calls the XrdSsiService::Prepare()

passing it the resource object ahead of executing any requests. The default

implementation simply calls XrdSsiProvider::QueryResource() to ascertain whether

or not the required resource is actually available on the server.

If you enabled authentication, the Prepare() call gives you a central place to

preauthorize use of the resource by a particular client. Of course, you need to

implement the appropriate authorization mechanism. This is a preauthorization step

because it does not take into account any actual requests that may be issued by the

client. So, you may need to further authorize based on the client’s request when

ProcessRequest() is called.

Since authorization is necessarily based on the client’s identity, you need to enable

XRootD authentication. When enabled, the client’s identity and credentials are

passed via the XrdSsiResource::client member. This is a pointer to the XrdSsiEntity

object which provides authentication details. Refer to the XrdSsiEntity.hh header

file for details.

The following code snippet shows how this can be done. Note that you need to

override the virtual XrdSsiService::Prepare() method in your service class.

#include “XrdSsi/XrdSsiService.hh”

void myService::Prepare(XrdSsiErrInfo &eInfo,

 const XrdSsiResource &rDesc)

{

// Perform any preauthorization, if needed. Authentication

// information is pointed to by rDesc.client; see header file

// XrdSsiEntity.hh for full details. If the client is allowed,

// return true. Otherwise, return false with an error.

//

 if (allowed) return true;

 eInfo.Set(“Resource use disallowed!”, EACCES);

 return false;

}

Referemce Scalable Service Interface

34 13-February-2018 SSI Reference

3.2.2 Performing Resource Optimization via Prepare()

Overriding the XrdSsiService:: Prepare() virtual method allows you to control and

optimize the use of the resource. Upon return from Prepare() you may

 redirect the client to another end-point where it will attempt to issue the

request, or

 delay the client for some specific amount of time before it attempts to issue

the request at the same end-point.

The following code snippet shows how this can be done. Note that you need to

override the virtual XrdSsiService::Prepare() method in your service class.

#include “XrdSsi/XrdSsiService.hh”

void myService::Prepare(XrdSsiErrInfo &eInfo,

 const XrdSsiResource &rDesc)

{

static const int delayTime = 10;

static const int port = 1094;

static const char *altHost = “somehost.domain.edu”;

// If we are too busy then delay the client

//

 if (toobusy)

 {eInfo.Set(“Too busy, try later!”, EBUSY, delayTime);

 return false;

 }

// If we need to send the client elsewhere tell the caller

//

 if (nothere)

 {eInfo.Set(altHost, EAGAIN, port);

 return false;

 }

// OK, we are set to go with future requests

//

 return true;

}

Scalable Service Interface Reference

SSI Reference 13-February-2018 35

3.3 Step 3: Process a Request

In practice, processing requests is relatively straightforward. The service object’s

ProcessRequests() method is called with the request object describing the request

along with the corresponding resource object. That is sufficient to get things going.

Interaction with the request object is a bit more problematic. This is because

asynchronous events can occur outside the scope of the service object’s knowledge.

The most significant event is request cancellation which can occur at any time.

Cancellation may occur because the client requested it or because the client’s TCP

connection was lost.

The SSI framework provides a rather novel way of ensuring that your service is

protected against any race conditions that may occur due to asynchronous events

that affect the request. The SSI framework employs two mechanisms:

 The use of an inheritable class, XrdSsiResponder, that knows how to safely

interact with the request object, and

 the notion of binding a request object to a particular XrdSsiResponder object.

The XrdSsiResponder class contains all the methods needed to interact with the

request object (i.e. get the request, release storage, send alerts, and post a response).

The object that you use to process and respond to requests should inherit the

XrdSsiResponder class. This is usually some agent object that the service object

creates for each request that it receives.

The object that inherits the XrdSsiResponder class must notify the SSI framework

which request it is handling. In essence, a responder binds itself to a request for the

duration of the request. All interactions with the request object then occur via

methods in the XrdSsiResponder class. The XrdSsiResponder::BindRequest()

should be used to establish a 1-to-1 relationship between the request object and the

object responsible for the request. Once the relationship is established, you no longer

need to keep a reference to the request object. The SSI framework keeps track of the

request object for you.

The following code snippet shows an example of how a service object can hand off a

request to an agent object. Since each request is provided a new thread, the code

path that processes the request can continue to use that thread for request execution

without the need of spawning an additional thread. In the example, the sample class

RequestProc is used to execute the actual request. The class myService, illustrated

in the previous section, is used to launch request processing.

Referemce Scalable Service Interface

36 13-February-2018 SSI Reference

#include “XrdSsi/XrdSsiResponder.hh”

#include “XrdSsi/XrdSsiService.hh”

class RequestProc : public XrdSsiResponder

{

public:

 void Execute() {int reqLen;

 char *reqData = GetRequest(reqLen);

 // Parse the request

 ReleaseRequestBuffer(); // Optional

 // Perform the requested action

 }

virtual void Finished(XrdSsiRequest *rqstP,

 const XrdSsiRespInfo &rInfo,

 bool cancel=true)

 {… // Reclaim any allocated resources}

 RequestProc() {}

virtual ~RequestProc{} {}

};

void myService::ProcessRequest(XrdSsiRequest &reqRef,

 XrdSsiResource &resRef)

{

 RequestProc theProcessor;

// Bind the processor to the request. This works because the

// it inherited the BindRequest method from XrdSsiResponder.

//

 theProcessor.BindRequest(reqRef);

// Execute the request, upon return the processor is deleted

//

 theProcessor.Execute();

// Unbind the request from the responder (required)

//

 theProcessor.UnBindRequest();

}

Scalable Service Interface Reference

SSI Reference 13-February-2018 37

The previous code is a very simple example. If request processing requires long

waits, you may want to spawn a new disposable thread to process the request. This

allows you to liberate it during waits and resume the request when the wait

completes. Returning from ProcessRequest() does not change the fact that you own

the request object up until UnBindRequest() is called. What you need to do when

the inherited Finished() method is called is described under finishing a request.

The two key calls that you should always make are:

 BindRequest() to tell the SSI framework who will be responding to the

request, and

 UnBindRequest() when you are done so that the SSI framework can reclaim

the request object.

You should not call BindRequest() in your processor’s constructor. This is because

once a responder is bound to a request; all pending asynchronous events associated

with that request are directed to the responder. Calling BindRequest() in a

constructor may activate live code paths during the construction of the object;

leading to unpredictable results.

You should not call UnBindRequest() prior to Finished() being called. If you do,

UnBindRequest() ignores the call and returns false to indicate a calling sequence

error. Otherwise, it returns true. UnBindRequest() also returns false if you call it

more than one. Failing to call UnBindRequest() creates a memory leak. The SSI

framework attempts to discover such leaks and logs them.

The SSI framework provides great flexibility in how you architect your service. That

said, your service object should not inherit the XrdSsiResponder class. This is

because the SSI framework obtains only one service object and uses it to handle all

the requests it receives. The responder object can only be bound to a single request

at a time making it impossible for a service object to respond to a request.

The following example assumes that requests come as an encoded stream of bytes

(e.g. protocol buffers). This is probably the most typical scenario. So, the service

object gets each request, decodes the bytes, and creates whatever parameters it

needs to pass along to a specialized object that actually executes the particular

request. This keeps request processing code relatively short and focused on a

particular task that it needs to do. You can likely devise even simpler architectures

to handle requests.

Referemce Scalable Service Interface

38 13-February-2018 SSI Reference

#include “XrdSsi/XrdSsiResponder.hh”

#include “XrdSsi/XrdSsiService.hh”

class RequestProc : public XrdSsiResponder

{

public:

virtual void Execute() = 0; // Defined by specialization

virtual void Finished(XrdSsiRequest *rqstP,

 const XrdSsiRespInfo &rInfo,

 bool cancel=true)

 {… // Reclaim any allocated resources}

};

// Derive specialized processors

class RequestProcX : public RequestProc

{

public:

virtual void Execute() {… // Perform the requested action }

 RequestProcX(request_parameters) {…}

virtual ~RequestProcX{} {…}

};

// Additional processor derivations

// A handy error processor

class RequestProcError : public RequestProc

{

public:

virtual void Execute() {SetErrResponse(eMsg, eCode);}

 RequestProcError(const char *msg, int ecode)

 : eMsg(msg), eCode(ecode) {}

virtual ~RequestProcError{} {}

private:

const char *eMsg;

int eCode;

};

Scalable Service Interface Reference

SSI Reference 13-February-2018 39

void myService::ProcessRequest(XrdSsiRequest &reqRef,

 XrdSsiResource &resRef)

{

 int reqLen;

 char *reqData = reqRef.GetRequest(reqLen)

// Decode the request and release the request buffer.

//

 reqRef.ReleaseRequestBuffer();

// Based on what is requested, create the appropriate request

// processing object and hand off execution.

//

 if (client_wants_x)

 {RequestProcX xProcessor(request_parameters);

 xProcessor.BindRequest(reqRef);

 xProcessor.Execute();

 xProcessor.UnBindRequest();

 return;

 }

 if (client_wants_y)

 {RequestProcY yProcessor(request_parameters);

 yProcessor.BindRequest(reqRef);

 yProcessor.Execute();

 yProcessor.UnBindRequest();

 return;

 }

// The request is invalid, respond with an error.

//

 RequestProcError errProc(“Request is invalid!”, EINVAL);

 errProc.BindRequest(reqRef);

 errProc.Execute();

 errProc.UnBindRequest();

}

Be aware that the XrdSsiRequest and XrdSsiResource objects become invalid once

UnBindRequest() is called.

Referemce Scalable Service Interface

40 13-February-2018 SSI Reference

3.3.1 Detached Requests

By default, a request must maintain a live TCP connection to the client that issued

the request during the time of its execution. If the TCP connect is lost, the request is

automatically cancelled. A client may indicate that the request run detached. In this

case, the client is given a handle to the request and the request does not require

maintaining a live TCP connection. However, detached requests can only run in

detached state for a limited time (the tome is specified by the client). If the request is

not attached within its time to live window, it is automatically cancelled.

Normally, a service need not be concerned whether a request is running attached or

detached as the SSI framework handles all of the nuances of such requests.

However, if your service makes decisions on how to run a request based on whether

it is attached or detached, then you should call XrdSsiRequest::GetDetachTTL(). If

the returned value is non-zero then the request will enter the detached state upon

return from ProcessRequest(). The returned value is the number of seconds it can

remain in detached state.

Because the request does not enter the detached state until you return from

ProcessRequest(), your service has the opportunity to reject such requests for any

reason whatsoever by simply posting an error response prior to returning. This also

allows you accept detached requests from some clients but not others and limit the

total number of detached requests that are outstanding. Should you return without

posting an error response while in ProcessRequest(), the request enters the detached

state.

If you need notification that a request has been attached, then you should override

the XrdSsiService::Attach() virtual method. When a client reattaches to the request,

the Attach() method is called with the same request object that originally started the

request and the resource object describing the resources associated with the request.

Be aware that the SSI framework allows a request to be attached by a client different

from the one that originally started the request. For security purposes, you should

reauthorize the client attaching to the request if you are performing any kind of

request authorization. You can reject the attach request by setting an error message

in the passed XrdSsiErrInfo object and returning false.

Finally, detached requests are, by default, disallowed. You must enable them using

the ssi.opts directive in the configuration file.

Scalable Service Interface Reference

SSI Reference 13-February-2018 41

An example of an Attach() method follows.

void myService::Attach(XrdSsiErrInfo &eInfo,

 const std::string &handle,

 XrdSsiRequest &reqRef,

 XrdSsiResource *resp

)

{

// If needed, authorize that the client can attach to the

// resource and perhaps the actual request.

//

// If the client is not allowed to attach to the request,

// return an error otherwise succeed

//

 if (not_allowed)

 {eInfo.Set(“Attach not permitted!”, EACCES);

 return false;

 }

 return true;

}

Scalable Service Interface Reference

SSI Reference 13-February-2018 43

3.4 Step 4: Post the response

After you process the request you must respond with a result. A response can be

 a data buffer along with the length,

 an error message with an errno value,

 an open file with a size whose contents are the response, or

 a stream object that supplies data.

The response is always contained in the XrdSsiRespInfo object, a private member in

the XrdSsiRequest object. That XrdSsiRespInfo object is passed to your

implementation of Finished() so that you can release the response resources after

the response has been sent to the client. The following table lists all the possible

response types you may receive relative to the object’s member contents.

rType is buff blen eMsg eNum fdnum fsize strmP

isData

data
data

length

n/a n/a

isError

message

errno

code

 n/a

isFile n/a n/a n/a n/a file

descriptor

file

size

n/a

isStream n/a n/a n/a n/a

XrdSsiStream

object

All responses are set by calling the appropriate SetResponse() method that an object

inherited from the XrdSsiResponder class. Once a response has been posted to a

request it cannot be changed. Hence, only a single response is allowed. An error

response is shown in the following code snippet

#include “XrdSsi/XrdSsiRequest.hh”

#include “XrdSsi/XrdSsiResponder.hh”

// Tell the client the request was not valid

//

SetErrResponse(“Invalid request!”, EINVAL);

Referemce Scalable Service Interface

44 13-February-2018 SSI Reference

3.4.1 Sending Optional Metadata Ahead of the Response

The SSI framework allows a server to send metadata ahead of the response data.

This metadata may be used for any purpose. For instance, the metadata may

describe the response so that the client can handle it in the most optimum way.

You send metadata with the XrdSsiResponder::SetMetadata() method using the

inherited XrdSsiResponder class. The metadata must be set before you post a

response calling XrdSsiResponder::SetResponse(). The maximum amount of

metadata that may be sent is defined by XrdSsiResponder:: MaxMetaDataSZ

constant member.

The metadata buffer must remain persistent until the Finished() method is called.

3.4.2 Sending Alerts

The SSI framework allows you to send asynchronous messages to the client’s

request object. This is done via XrdSsiResponder::Alert() which, in turn, calls

XrdSsiRequest::Alert(). Both calls produce identical results, though using the

responder’s version provides better code consistency and is the preferred method.

Alert messages can be anything you want them to be. The SSI framework enforces

the following rules

 alerts are sent in the order posted,

 all outstanding alerts are sent before the final response is sent (i.e. the one

posted using a SetResponse() method),

 once a final response is posted, subsequent alert messages are not sent, and

 if a request is cancelled, all pending alerts are discarded.

In order to send an alert, you must encapsulate your message using an

XrdSsiRespInfoMsg object. The object provides synchronization between posting

an alert, sending the alert, and releasing storage after the alert was sent. It is defined

in the XrdSsiRespInfo.hh header file.

The XrdSsiRespInfoMsg object needs to be inherited by whatever class you use to

manage your alert message. The pure abstract class, RecycleMsg() must also be

implemented. This method is called after the message is sent or when it is discarded.

A parameter to the method tells you why it’s being called.

Scalable Service Interface Reference

SSI Reference 13-February-2018 45

The following, rather inefficient, code snippet shows a sample message handler class

and the sending of an alert message. We presume the code that sends the alert has

access to the methods in the XrdSsiResponder class.

#include “XrdSsi/XrdSsiRespInfo.hh”

class AlertMsg : public XrdSsiRespInfoMsg

{

public:

void RecycleMsg(bool sent=true) {delete this;}

 AlertMsg(const std::string &aMsg)

 : XrdSsiRespInfoMsg(CopyMsg(aMsg),aMsg.size()+1)

 {}

 ~AlertMsg() {}

private:

char *CopyMsg(std::string &msg)

 {theMsg = msg; return theMsg.c_str();}

std::string theMsg;

};

std:;string myMsg = “I am still here!”;

// Send an alert message

//

Alert(new AlertMsg(myMsg));

The reason you need to pass a C-type version of the string in the above example is

because it allows XrdSsiRespInfoMsg to implicitly handle any type of container.

The reason we pass aMsg.size()+1 as the size is because we want to send the null

byte that terminates the C-type version of the string. The CopyMsg() method

ensures that XrdSsiRespInfoMsg is passed a pointer to the copied the string.

You can determine whether or not the message was actually sent by checking the

argument “sent”. When true, the message was sent to the client. Otherwise, it was

discarded because there was no reason to send the message. Be aware, the sending

of a message to a client is no guarantee that the client actual receives it. The client

must enable receiving alerts and must not have cancelled the request.

Scalable Service Interface Reference

SSI Reference 13-February-2018 47

3.5 Step 7: Finish or Cancel the Request

This section is broken into two sections: 1) normal request completion, and 2)

request cancellation. The reason is that the considerations of each event sufficiently

differ to the extent that you may need to take different actions depending on

whether a request completes normally or is cancelled.

3.5.1 Normal Request Completion

When the client-server exchange completes, the SSI framework calls the Finished()

method in the object that has been bound to the request via a BindRequest() call.

This allows the request responder to release all resources dedicated to the request. A

client-server exchange completes normally when either all of the response data has

been sent to the client.

In practice, client actions are asynchronous to the server. The server-side framework

always calls Finished() when the full response has been sent to the client

irrespective of the client calling its own request’s Finished() method. This is done to

speed up client-server interactions. While practically consistent, it is not logically

consistent because while the data is in transit to the client the client may cancel the

request at the same time. The client-side framework makes it appear that the request

was cancelled even though the server-side framework will not be aware of it.

The following code snipped shows the typical processing sequence for the

Finished() method. We assume the requestProc class has inherited the

XrdSsiResponder class and overrides its pure abstract Finished() method.

#include “XrdSsi/XrdSsiResponder.hh”

void requestProc::Finished(XrdSsiRequest *rqstP,

 const XrdSsiRespInfo &rInfo,

 bool cancel)

{

 if (cancel) {see section on request cancellation}

// Reclaim resources dedicated to the request and then tell

// caller the request object can be reclaimed.

// Tell the framework we are done with the request object

//

 UnBindRequest();

}

Referemce Scalable Service Interface

48 13-February-2018 SSI Reference

3.5.2 Request Cancellation

A request is cancelled when any of the following happen:

 the client calls its request object’s Finished() method before all of the response

data has been sent,

 the TCP connection for an attached request is lost before all of the response

data has been sent, or

 a detached request has not been attached within its timeout window.

When a request is cancelled, the SSI framework calls the Finished() method in the

object that has been bound to the request via a BindRequest() call with the cancel

argument set to true.

While it should be possible to fully clean-up resources dedicated to the request

when Finished() is called after you post a final response (i.e. normal completion), it

isn’t necessarily the case for cancelled requests. This is because Finished() is called

asynchronously to any processing that might be going on for the request being

cancelled and the SSI framework doesn’t know how you implemented that

processing. Regardless of how you stop request processing, the fact that Finished()

is called does not automatically reclaim the request object.

The discussion above should make it obvious that the request object cannot be

automatically reclaimed because request processing may take some time to actually

be cancelled. However, the SSI framework does ensure that the responder will not

be able to successfully post a response once Finished() is called.

Once processing is stopped, UnBindRequest() should be called so that the SSI

framework can reclaim the request object.

3.6 Deleting Server-Side Objects

The following rules apply to safely delete the server-side objects described in the

previous sections.

3.6.1 XrdSsiService Object

Technically, the XrdSsiService object can only be deleted in its Stop() method.

However SSI framework never tries to stop a service.

3.6.2 XrdSsiStream Object

The stream object may only be deleted after Finished() is called.

Scalable Service Interface Reference

SSI Reference 13-February-2018 49

3.7 Overall Flow Summary

The table below shows the overall flow with a simple single data response. The flow

is more complicated when the response is a data stream. Details on presented in the

sections on streams.

Client

Application

Client-Side

SSI Framework

 Server-Side

SSI Framework

Server-Side

Service

XrdSsiProvidorClient->

GettService()

Return XrdSsiService

Object

XrdSsiProvidorServer->

GetService()

Return XrdSsiService

object

Create XrdSsiRequest

Call ProcessRequest()

async return

Call BindRequest()

Call GetRequest()

write()

read()

Create XrdSSiRequest

Call ProcessRequest()

Call BindRequest()

Call GetRequest()

Perform service

Call

ProcessResponse()

Notify client of

pending response

Call SetResponse()

As data response

Call

GetResponseData()

async return

read()

Call

ProcessResponseData()

write()

Call Finished()

Cleanup

Call UnBindRequest()

Call Finished() Cleanup

Scalable Service Interface Reference

SSI Reference 13-February-2018 51

4 XrdSsiStream

The XrdSsiStream object is used to provide data from a streaming source. Examples

of streaming sources are:

 Socket

 Incremental database query

 Character device

Essentially, a streaming source is any data source that provides data in an

incremental fashion whose size is not easily determined or, if it is known, whose size

is too large to conveniently handle in one interaction with the data source.

The XrdSsiStream is an abstract class whose creator must provide a concrete

implementation suitable to the data source in question. Any data source can be used

but the implementation must adhere to the invocation restrictions defined herein.

The XrdSsiStream object supports two types of streamlining modes:

1) Active streams where, when asked for data, the object supplies the buffer

containing the data, and

2) Passive streams where, when asked for data, a buffer is supplied by the

requestor that is to be filled with data.

The two types of streaming modes are described in subsequent sections.

4.1 Relationship to other classes

The XrdSsiStream object is only meaningful in the context of an XrdSsiRequest

object to affect a response. Hence, the XrdSsiStream object is the response to a

request. Subsequently, the requestor obtains actual response data using the

provided XrdSsiStream object.

Recall that responses are posted to a request object using the

XrdSsiResponder::SetResponse() method. This means that any object wishing to

post a stream response must

a) inherit the XrdSsiResponder class, and

b) be bound to the request with a previous XrdSsiResponder::BindRequest()

invocation.

Referemce Scalable Service Interface

52 13-February-2018 SSI Reference

The above two requirements allow an object to process and respond to a request

without any extensive request bookkeeping and maintains a 1-to-1 relationship

between a request and the object responsible for responding to the request.

4.2 Object Persistence

A stream object may not be deleted until all references to the object have been

dropped. An explicit reference occurs when a stream object is exported via a call to

XrdSsiResponder::SetResponse(). Only when XrdSsiService::Finished() is called

with a pointer to the request object whose response holds the stream object can the

creator of the stream object be assured that no SSI framework references exist to that

stream object. Only then can the stream object be deleted.

The XrdSsiResponder::Finished() method is called when the

XrdSsiRequest::Finished() is called indicating that the request has completed. A

request can be marked as completed at any time even when not all of the stream

data has been consumed. The stream implementation is responsible for reclaiming

any unconsumed non-exported resources.

Be aware that active stream buffers that have been exported via the

XrdSsiStream::GetBuff() method may only be reclaimed in the

XrdSsiStream::Buffer::Recycle() method. This is because a reference to the buffer

remains active until the buffer is recycled whether or not the request has been

marked as finished.

4.3 Streaming Request-Response Sequence

The following diagram shows the sequence and time relationships between client

actions and server actions relative to a stream. The sequence is the same whether an

active or passive stream is used. The differences are described under the specific

discussion of each type of stream. Red arrows show sequential calling sequences

while block colors indicate individual threads. A detailed explanation follows.

Scalable Service Interface Reference

SSI Reference 13-February-2018 53

 Client

Application

Client-Side

SSI Framework

Server-Side

SSI Framework

Server-Side

Service (ssP)

1 Construct request crP

csP Process(crP)

Serialize request

object, send to server

and return

2 Perform other tasks

until notified that

response is ready

 Receive request de-

serialize to request

object srP

3 On new thread

ssP Process(srP)

BindRequest(srP,

this)

4 Process request

5 xsP = new

XrdSsiStream(type)

6 Notify client that

response is ready and

return

SetResponse(xsP)

7 Receive notification

on new thread

 If active start filling

first buffer with data

8 Create a passive

stream, psP and

crP

SetResponse(psP)

9 Obtain buffer bP for

response data

crP

ProcessResponse

10 crP

GetResponseData(bP)

Send to server

requesting data and

return

11 Perform other tasks

until data is ready

 Receive request for

data for active stream

12 bP = xsP GetBuff() Provide data buffer

13 For passive stream

n=xsP SetBuff(bP)

or

Fill data buffer

14 Send data to client

and poSSIbly bP

Recycle()

If active start filling

next data buffer if

needed

15 Receive data into bP

on a new thread

16 Handle response data

Optionally repeat at

step 9 and return or…

crP

ProcessResponseData

17 crP Finished() PoSSIbly send to

server and return

Sync or Async call

srP Finished()

Release stream and

return

Request-Response Sequence Using a Stream

Referemce Scalable Service Interface

54 13-February-2018 SSI Reference

Referencing the above diagram, the following steps occur:

1) The client constructs a request encapsulated by the XrdSsiRequest object

pointed to by crP and passes it to the client-side service pointed to by csP for

processing. The service object serializes the request object and sends it to its

corresponding service object at some server. None of these actions block. If

the request cannot be sent immediately it is queued and sent in the

background.

2) When the call returns the application is free to perform any other required

tasks. The request object will be informed that a response is ready when the

server actually responds. In the mean time the server receives the request and

recreates the request object pointed to by srP.

3) The SSI framework spawns a new thread to process the request. This is to

avoid any timeout issues should the request take a long time to complete. It

calls the server-side service object pointed to by ssP to process the request. In

this example, the service object will be processing the request so it binds to

the request to setup a 1-to-1 mapping between the request and the request

processor.

4) The request is processed.

5) At this point the appropriate type of stream is created. If the results are either

too large or cannot be immediately obtained an active stream may be created.

Otherwise, a passive stream may be created. In either case xsP point to a

stream of appropriate type.

6) Since the stream is the actual response, the service object calls SetResponse()

pointing to the stream object. It can do so because it must have inherited the

XrdSsiResponder class. As part of the SetResponse() call the SSI framework

sends notification to the client that a response has been posted to the request

object and returns. This is not blocking action.

7) At this point the service object, if using an active stream, is free to start filling

a buffer with response data while the notification is in transit. At some point

the client-side SSI framework receives the notification.

8) The SSI framework creates a passive stream, pointed to by psP, to relay the

data from the server to the client. The framework matches the notification to

the corresponding request object, crP. It then sets the passive stream as the

response for the request using SetResponse().

9) As part of the SetResponse() process, the ProcessResponse() method in the

request object is called to notify the request that a response is ready. In this

example, the request’s ProcessResponse() method obtains a buffer to hold the

response data.

Scalable Service Interface Reference

SSI Reference 13-February-2018 55

10) It then calls the request object’s GetResponseData() data method to fill the

buffer with response data. Note that the GetResponseData() method is a

convenience function that actually uses the passive stream to obtain the data

freeing the application from having to deal with actual streams. The

application could have used the passive stream directly if it wanted to. When

the passive stream is asked to fill the buffer it sends a request for data to the

server. Again, this is a non-blocking call.

11) Upon return from GetResponseData() the application is free to perform any

other required tasks until it is informed that the data has arrived. In the mean

time, the server has received the request for data.

12) Active stream: The SSI framework calls the active stream’s GetBuff() method

to obtain response data. The active stream simply hands over a buffer that

contains some amount of data. Since this buffer has been exported to the

framework it cannot be touched or freed until the framework indicates it is

through with the buffer by calling the buffer’s Recycle() method.

13) Passive stream: The SSI framework calls the passive stream’s SetBuff() method

to obtain response data. The framework supplies the buffer and its size and

the stream must fill the buffer to the extent possible.

14) If enough data exists in the buffer, the data is sent to the client. Otherwise, the

SSI framework will ask for (active step 12) another buffer or (passive step 13)

another buffer fill until it accumulates enough data to send, as determined by

the amount of data the client wanted to receive (i.e. the size of the client’s

buffer) or the stream indicates that no more data exists. This is known as

impedance matching and is described in subsequent sections. Note that for

active streams the supplied buffer’s Recycle() method may be called during

this process when the framework no longer needs to use the buffer. When

called, the buffer should either be deleted or reclaimed for future use.

Additionally, the service may start to pre-fill a buffer to satisfy a future call to

GetBuff() while the previous data is in transit to the client.

15) Using a new thread, the SSI framework matches the data with the request,

crP, that asked for the data and reads the data into the buffer supplied by the

client.

16) The framework invokes the request’s ProcessResponseData() method. The

application handles the data as needed and may repeat steps 9 and 10 if it

needs more data. In any case, it must return to the caller.

Referemce Scalable Service Interface

56 13-February-2018 SSI Reference

17) At some point, the request is finished and the application invokes the

request’s Finished() method. If not all of the data has been received by the

SSI framework, the server is notified to discard any remaining data. In any

case, the framework removes all references to the request object which allows

the application to delete the object. The request object may not be deleted

until its Finished() method is called. On the server side, one of two

poSSIbilities exist, as follows:

a) If not all of the data has been transmitted to the client but a finished

request is received, then for active streams the server-side SSI framework

calls Recycle() on any buffers it still has control over. For all stream types,

the framework invokes the corresponding request’s Finished() method

indicating that the request was cancelled.

b) If the stream indicated that no more data exists and the remaining data

has been sent to the client, then for active streams SSI framework calls

Recycle() on any buffers it still has control over. For all stream types, the

framework invokes the corresponding request’s Finished() method

indicating that the request was successfully completed.

In either case, it invokes request object’s Finished() method which invokes

the Finished() method of the responder object bound to the request. That

method can reclaim the stream object. Active streams are assured that either

all buffers exported by the stream’s GetBuff() method have already been

recycled or will be upon return.

4.3.1 Active Streams

An active stream object is one that provides a buffer containing the data when

requested to provide data. This means that the implementation of an active stream is

responsible for buffer management. Active streams only make sense for a service

provider (i.e. the server-side plug-in). Active streams are never created by the SSI

client-side framework. A sample active stream derivation is shown below.

#include “XrdSsi/XrdSsiStream.hh”

class myStream : public XrdSsiStream

{public:

Buffer *GetBuff(XrdSsiErrInfo &eInfo, int &dlen, bool &last);

 myStream() : XrdSsiStream(XrdSsiStream::isActive) {…}

virtual ~myStream() {…}

};

Scalable Service Interface Reference

SSI Reference 13-February-2018 57

4.3.1.1 Active Stream Impedance Matching

Active streams pose a particular challenge since the SSI framework does not know

how much data the active stream will deliver. Unless there is some indication in the

request-response protocol, the client may not even know how much response data

to expect. Consequently, clients typicaly provide a buffer of some size and ask the

SSI framework to fill it to the extent possible.

When the server-side SSI framework initially receives a read request for the size

equivalent to the size of the client’s buffer, it asks the active stream for a buffer

passing it the number of bytes needed to completely satisfy the read request. If the

stream provides fewer bytes, the SSI framework subtracts the number of bytes

returned from the original size, recycles the current buffer, and asks for another

buffer of reduced size so that it can completely satisfy the request. This repeats until

either the request is satisfied or the stream indicates that no more data remains.

If the active stream provides more data than is needed, the amount needed is used

to satisfy the request and the remaining data is held (i.e. the buffer is not recycled).

The data in the buffer is used to satisfy a subsequent request for data.

Subsequent requests for data either start anew or use data in an existing buffer to the

extent possible. In this way, the server-side SSI framework matches unequal buffer

sizes (i.e. impedance matches). Clearly, the most efficient transfer mode is where the

active stream provides exactly the amount of data needed.

Impedance matching does not come without a latency cost. If the stream is slow in

supplying data and the client’s buffer is large then the client waits until the full

buffer can be filled. This may cause the client to timeout and cancel the request. In

the end, how an active stream supplies data is a trade-off between its speed and the

amount of data requested by the client at one time. While small requests may be

used to better match the speed of a stream, they come at the cost of more client-

server interactions which incur additional network latency.

The good solution for slow streams is to pre-fill buffers ahead of client requests. The

assumption is that it is rare that a request will be cancelled so as wasting the effort.

The preceding stream diagram illustrates the appropriate places in the request-

response sequence where pre-filling can be done with good results. Typically, two or

three ready buffers should suffice.

Referemce Scalable Service Interface

58 13-February-2018 SSI Reference

The natural question is whether the initial buffer should be ready before posting the

stream as a response to the request object. The answer really depends on the speed

of the stream. If it is slower than the client turn-around then at least one buffer

should be ready before posting the stream response. Otherwise, there is likely

enough time to pre-fill at least one buffer afterwards. The general solution to this

problem is to implement a consumer-produce algorithm with a fixed number of

buffers.

4.3.2 Passive Streams

A passive stream is a stream that fills a caller supplied buffer. Passive stream need

not manage any buffers as the caller always supplies one. Inherently, they are

simpler to implement and provide the user of the stream complete freedom on how

to manage the buffer space. Because of their simplicity and generality, only passive

streams are used by the client-side SSI framework.

While passive streams provide much of the same capabilities as active stream they

have one significant drawback; buffers cannot be pre-filled by a stream without

significant data movement which, many times, is very expensive in terms of CPU

utilization. Frequent and large movements of data also incur a large amount of

memory contention that may cause significant latency in overall processing. Thus

passive streams should only be used for data sources that can provide (i.e. fill a

buffer) at reasonably high speeds. A typical derivation is shown below.

#include “XrdSsi/XrdSsiStream.hh”

class myStream : public XrdSsiStream

{public:

bool SetBuff(XrdSsiRequest *rqstP, char *buff, int blen);

 myStream() : XrdSsiStream(XrdSsiStream::isPassive)

 {…}

virtual ~myStream() {…}

};

Scalable Service Interface Reference

SSI Reference 13-February-2018 59

4.3.2.1 Passive Stream Impedance Matching

While passive streams are relatively simple, the SSI framework still attempts to

impedance match data availability from the stream with the amount of data

requested by the client.

When the server-side SSI framework initially receives a read request for the size

equivalent to the size of the client’s buffer, it asks the passive stream to completely

fill the buffer by passing it the number of bytes needed to completely satisfy the read

request. If the stream provides fewer bytes, the SSI framework subtracts the number

of bytes provided from the original size, and asks for another buffer fill of reduced

size so that it can completely satisfy the request. This repeats until the either the

request is satisfied or the stream indicates that no more data remains.

Impedance matching does not come without a latency cost. If the stream is slow in

supplying data and the client’s buffer is large then the client waits until the full

buffer can be filled. This may cause the client to timeout and cancel the request. In

the end, how an passive stream supplies data is a trade-off between its speed and

the amount of data requested by the client at one time. While small requests may be

used to better match the speed of a stream they come at the cost of more client-

server interactions which incur additional network latency.

Because of the simplicity of passive stream, there is no efficient way to pre-fill

buffers without incurring excessive memory-to-memory data movement which may

cause excessive CPU usage or memory access latency.

Scalable Service Interface Reference

SSI Reference 13-February-2018 61

5 Clustering SSI Servers

Since SSI executes in the XRootD framework, all SSI servers can be clustered using

the native XRootD clustering services via the cmsd daemon. An XRootD cluster

uses a manager node (also known as the redirector) to manage up to 64 server

nodes. If your configuration has more than 64 servers, these are handled by

additional daemons called supervisor nodes. Each supervisor can handle up to 64

nodes and there is no limit on the number of supervisors you may have. The details

of XRootD clustering can be found in the Cluster Management Service

Configuration Reference. In this chapter we focus on a simple clustered

configuration and what needs to be done by your SSI server-side implementation to

support it.

First, you need to understand how the cmsd locates resources in a cluster. The basic

steps are as follows:

 A client connects to the XRootD daemon (hitherto called xrootd) that pairs

with a manager cmsd. Here the xrootd handles data traffic while the cmsd is

responsible for locating resources and monitoring the health of a cluster.

 The client then sends the resource name to the manager xrootd. Since the

manager xrootd knows it is in a clustered environment; it asks its

corresponding cmsd to locate the resource to be used by a request.

 If the cmsd has not seen the resource before, it sends a query to every SSI

server node that potentially has the resource asking one or more to respond

affirmatively if it can provide that resource.

 If no SSI servers respond then the client is told that the resource is not

available.

 If one or more SSI servers respond that they have the resource, the cmsd

chooses one of the SSI servers and tells the xrootd where to redirect the client

to execute the request using the resource.

 The client then reconnects to the server that has the resource and asks it to

execute the corresponding request. All subsequent interactions relative to the

resource/request are directed to that server.

The above scenario means that the cmsd on the SSI server needs ask your plug in

whether or not the resource is available using some kind of interface. This is done

using the QueryResource() method in the XrdSsiProvider class. The steps that need

to be taken are very similar to those required to create a provider for the xrootd

daemon. The next section describes what needs to be done for the cmsd.

Referemce Scalable Service Interface

62 13-February-2018 SSI Reference

5.1 Define the Service Provider for the cmsd

Server-side services are provided via the XrdSsiProvider object. While the client-

side has one that is built-in the server-side must define one. There are actually two

types of providers:

 A cmsd provider that needs only to ascertain whether or not a resource is

available on the node on which its QueryResource() method is called, and

 A xrootd provider that actually provides the service via the GetService()

method. The provider still needs to be able to ascertain resource availability.

The lookup provider is used by cmsd to ascertain the availability of a resource on a

particular server node. Since the cmsd never actually provides any service it never

obtains a service object from the provider object. The lookup provider object is

pointed to by the global pointer XrdSsiProviderLookup which you must define and

set at library load time (i.e. it is a file level global static symbol).

The service provider is used by xrootd to actually process client requests. This was

described in a previous section. While it can be the same service provider object; in

most cases it makes sense to have two different objects provide the QueryResource()

method as it usually it differs in actual implementation.

When your library is loaded, the cmsd locates the provider using the symbol

XrdSsiProviderLookup. Initialization fails if the symbol cannot be found or if its

value is nil.

The two methods that you must implement in your derived XrdSsiProvider object

for the cmsd are:

 Init(), and

 QueryResource()

When a client issues a request with a resource, and the resource has not been used

before, all servers indicating that they can provide the resource are asked via this

method if they can actually provide the resource. The SSI framework then picks one

of those servers to handle the client’s requests relative to the resource. This

effectively implements a real-time dynamic resource registration system.

The following code snippet shows how you would typically define the provider

pointer at file level.

Scalable Service Interface Reference

SSI Reference 13-February-2018 63

#include “XrdSsi/XrdSsiProvider.hh”

class MyLookupProvider : public XrdSsiProvider {};

XrdSsiProvider *XrdSsiProviderLookup = new MyLookupProvider;

Once the provider object is found, its Init() method is called. The method should

initialize the object for its intended use. Below is a sample derivation of an

XrdSsiProvider class for the cmsd.

#include “XrdSsi/XrdSsiProvider.hh”

#include “XrdSsi/XrdSsiService.hh”

class myLookUpProvider : public XrdSsiProvider

{

public:

// Init() is always called before any other method

//

bool Init(XrdSsiLogger *logP, XrdSsiCluster *clsP,

 std::string cfgFn, std::string parms,

 int argc, char **argv

) {initOK = true; // If all went well

 return initOK;

 }

// The QueryResource() method determine resource availability

//

XrdSsiProvider::

rStat QueryResource(const char *rName,

 const char *contact=0

);

 myLookUpProvider() : initOK(false);

virtual ~myLookUpProvider() {}

private:

bool initOK;

};

Scalable Service Interface Reference

SSI Reference 13-February-2018 65

6 Client Configuration

Generally, there is no need to configure anything on the client’s side. The client side

program simply links against libXrdSsiLib.so to obtain access to the client-side SSI

framework. In some cases, you may want to change certain defaults at start-up time.

These are done by calling certain static methods in the XrdSsiProvider class prior to

obtaining any service objects. The various options that are available are described

below.

6.1 Number of threads

You specify the maximum number of threads to use to handle SSI affairs by calling

XrdSsiProvider:: SetCBThreads().

1) Callback threads: The number of threads used for callbacks establish the

maximum number of callbacks that may be active at the same time. The

default is 300 but can be no more than 32,767.

2) Network threads: these drive callback threads. In practice, far fewer of these

threads are needed and the default is 10% of the number of callback threads.

The specifiable range is between 3 and 100.

Be aware that in Linux, the nproc ulimit determines the actual number of threads

that can be used. Make sure that the nproc limit is not less than the total number of

threads you want. Add at least 10% to the value for other background threads.

6.2 Default Timeouts

Various timeouts are used to detect error events. Most of these timeouts are set to

infinity and error detection is performed in a time insensitive manner. You may

wish to adjust these timeouts by calling XrdSsiProvider:: SetTimeout() based on

what you are actually doing. The following table explains the timeouts.

Type Default Meaning of Timeout

connect_N 5 Number of times to retry a failed server connection

connect_T 120 Seconds to wait for a connection to complete before retrying

idleClose ∞ Seconds a socket may remain idle before it is closed

request_T ∞ Seconds to wait for a server interaction to complete

stream_T ∞ Seconds that a socket may be idle with outstanding requests

Referemce Scalable Service Interface

66 13-February-2018 SSI Reference

6.3 Request Timeout

Request timeouts may be specified on an individual basis by calling the protected

XrdSsiRequest::SetTimeOut() method on the request object whose timeout you

wush to set prior to calling XrdSsiService::ProcessRequest() with that request

object. The default uses the XrdSsiProvider::request_T global setting.

Scalable Service Interface Reference

SSI Reference 13-February-2018 67

7 Server Configuration

In order to use the server-side SSI framework you must configure an XRootD

server. There are two modes: unclustered (i.e. stand-alone single server) and

clustered (i.e. multiple servers clustered by a redirector or manager node).

The following sections show the minimal set 1 of XRootD directives needed to use

the SSI framework for each type of configuration. Finally, the list of SSI-specific

directives is explained. These may help you customize the SSI framework.

7.1 Resource Name Configuration

While resource names are arbitrary, by default they must start with /tmp; which is

rather useless. You control the form of valid resource names using the all.export

configuration directive. This directive is essentially mandatory in order to be able to

use resources. The directive allows you to specify the leading characters of a valid

resource name. There can be any number of these directives. For instance,

all.export /resource/ nolock r/w

 Specifies that a valid resource must start with the sequence “/resource/” followed by

a sequence of characters that includes Names are restricted to the following set of

characters:
 Letters (upper or lower case),
 Digits (0-9), and

 Special characters: !@#%^_-+=:./

In general, paths may not contain shell meta-characters or imbedded spaces. Be
aware that you should always specify the nolock and r/w options in the order

shown; otherwise, requests will likely fail.

It is possible to lift most restrictions on resource names by specifying the following

configuration directive:

all.export *? nolock r/w

1
 For a complete list of directives see the relevant reference manuals on XRootD and cmsd.

mailto:!@#%^_-+=:./

Referemce Scalable Service Interface

68 13-February-2018 SSI Reference

Resource names are not checked for validity but still may not contain imbedded

blank characters. The added question makes XRootD scan for a question mark and

split the resource into a name and a CGI string.

7.2 Unclustered XRootD SSI Configuration

Tell XRootD to use only the SSI framework. If you wish to

also use the filesystem features of XRootD then add the

keyword default (i.e. xrootd.fslib libXrdSsi.so default).

xrootd.fslib libXrdSsi.so

Turn off async processing as this does not work with SSI

xrootd.async off

Declare the valid prefix for resource names. You can have

as many of these directives as you wish, each specifying a

different prefix (substitute the actual prefix for respfx).

If you wish to use resource names without a leading slash,

read the section describing resource name configuration.

all.export respfx nolock r/w

Specify the resource lookup function to be used.

oss.statlib -2 libXrdSsi.so

Specify the location of the shared library implementing

you SSI service. See the SSI svclib directive for details.

ssi.svclib libpath

Scalable Service Interface Reference

SSI Reference 13-February-2018 69

7.3 Clustered XRootD SSI Configuration

In addition to the directives specified for an unclustered configuration, you need to

specify the additional directives shown below.

Tell XRootD who the cluster manager is (a.k.a. redirector).

Substitute for manhost the fully qualified DNS name of the

node running the cluster manager. For manport the port

number that it should use to listen for requests. Do so

everywhere you see manhost and manport here.

all.manager manhost:manport

Assign the appropriate role to SSI servers and the cluster

manager. This is done using an if-else-fi clause. In this

way the same configuration file can be used everywhere.

if manhost

all.role manager

else

all.role server

fi

You may also need to add the –arevents option to the oss.statlib directive if resource

availability maps are not shared between the XRootD process and the cmsd process

as show below.

oss.statlib -2 –arevents libXrdSsi.so

in order to be able to synchronize the map used by the cmsd with the XRootD

process. Refer to discussion on how to synchronize resource availability in an SSI

cluster.

Referemce Scalable Service Interface

70 13-February-2018 SSI Reference

7.4 Separating SSI and XRootD Resource Names

Recall that the all.export directive tells the SSI framework how to process resource

names. It is likely you will need to specify this directive to establish a coherent

naming convention for your resources. While there are numerous options only two

are meaningful for the SSI framework, nolock and r/w; as previously described.

While resource names are typically used to identify SSI specific resources, the SSI

framework allows you to also define traditional file system resources that can be

used by clients using the same server. This is enabled using the ssi.fspath directive

described under the SSI specific directives.

When you wish to enable an xrootd server to handle SSI requests as well as file

system request, you need to alter the xrootd.fslib directive, add ssi.fspath

directives, and the appropriate all.export directives, as shown below.

Tell XRootD to handle SSI requests as well as regular XRootD

file system requests (notice the addition of default).

xrootd.fslib libXrdSsi.so default

Tell the SSI framework which resource name prefixes refer

to actual file system requests. Substitute for fspfx a

file system path prefix. There can be many ssi.fspath

directives.

ssi.fspath fspfx

Declare the valid prefix for resource names. You can have

as many of these directives as you wish, each specifying a

different prefix. Substitute the actual prefix for respfx

You must also export the file system prefixes declared via

the ssi.fspath directive. However, you must not specify the

nolock option for these to prevent file corruption.

all.export respfx nolock r/w

all.export fspfx appropriate_options

Continue with the directives specified in the previous

sections for unclustered or clustered configurations.

Scalable Service Interface Reference

SSI Reference 13-February-2018 71

7.5 SSI Specific Directives

All SSI-specific directives start with the prefix “ssi.” to differentiate them from other

types of directives.

7.5.1 fspath

ssi.fspath fspfx

Function

Specify the resource name prefix that routes an SSI request to the XRootD file

system plug-in.

Parameters

fspfx The resource name prefix, when seen, is to route the request to the file system

plug-in instead of the SSI service.

Default

 There is no default, see the notes for more information.

Notes

1) If you enable the XRootD file system plug-in to function alongside the SSI

framework then you need to specify which resource name prefixes

actually refer to the file system and not the SSI service. When a resource

name with the matching prefix is encountered, the request is routed to the

file system plug-in.

2) Each fspfx specified with the fspath directive must also be specified using

the all.export directive. However, you must not specify the nolock option

for these exports.

Example
 ssi.fspath /tmp

 all.export /tmp

Scalable Service Interface Reference

SSI Reference 13-February-2018 73

7.5.2 opts

ssi.opts [authdns] [detreqok] [maxrsz rsz[k | m | g]]

 [requests rnum] [respwt sec]

Function

Specify the resource name prefix that routes an SSI request to the XRootD file

system plug-in.

Parameters

authdns

Specifies that the client’s host name be fully resolved in the supplied

authentication information. By default, the host identification is determined

by the XRootD xrd.network configuration option. Hence, the host

identification may be a host name or an IP address.

detreqok

Specifies that client’s may execute detached requests. By default, detached

requests are disallowed.

maxrsz rsz

Specifies the maximum size of a valid request. Specify for rsz the largest

possible request size. The rsz can be suffixed by k, m, or g to indicate kilo-,

mega-, or giga-bytes; respectively. The default is 2m. See the next section on

how to better optimize values greater than two megabytes.

requests rval

Specifies the maximum number of request objects to hold in reserve for future

requests. Specify for rval a number greater than 0 but no more than 64k. The

default is 256.

respwt sec

Specifies the number of seconds the client should be asked to wait for a

response when a response is not ready. The sec can be suffixed by d, h, or m,

or s to indicate days, minutes, or hours; respectively. The default is 24855d.

Referemce Scalable Service Interface

74 13-February-2018 SSI Reference

Default
 ssi.opts maxrsz 2m requests 256 respwt 24855d

Example
 ssi.opts requests 512

7.5.2.1 Optimizing Large Request Sizes

The default XRootD transfer unit is set to 2 megabytes. If you specify an SSI request

size that is greater than 2MB and the SSI framework receives a request that is

greater than 2MB then the request data must be copied in 2MB units into a

contiguous area of storage before presenting the request to the service. This can

represent significant overhead if many requests are larger than 2MB.

You can eliminate the overhead if you make the XRootD transfer unit match the

maximum SSI request size. You do this by via the xrd.buffers directive, shown

below.

xrd.buffers maxbsz ssi_rsz[k | m | g]

 Other options for this directive are documented in the “Xrd/XRootD Configuration

Reference”.

Scalable Service Interface Reference

SSI Reference 13-February-2018 75

7.5.3 svclib (required)

ssi.svclib lib [parms]

Function

Specify the shared library that implements the SSI service.

Parameters

lib The path to the shared library that contains the code the implements the

protocol.

parms Parameters to be passed to the service initialization method at load time.

Default

 There is no default; this is a required directive.

Example
 ssi.svclib libService.so

Referemce Scalable Service Interface

76 13-February-2018 SSI Reference

7.5.4 trace

ssi.trace [-]option

option: {all | debug | off} [[-]option]

Function

Specify execution tracing options.

Parameters

option Specifies the tracing level. One or more options may be specified. The

specifications are cumulative and processed left to right. Each option may be

optionally prefixed by a minus sign to turn off the setting. Valid options are:

all selects all possible trace levels other than debug

debug adds additional tracing for debugging purposes

off traces nothing

Defaults

Tracing is disabled.

Notes

1) All tracing is forcibly enabled when the daemon is invoked with the –d

option.

2) All previous trace settings are discarded when off is encountered.

Example
ssi.trace all

Scalable Service Interface Reference

SSI Reference 13-February-2018 77

8 Managing Resources in a Cluster
When the XrdSsiProvider::Init() method is called in a clustered environment, it is

passed a pointer to an XrdSsiCluster object. This object is used to manage resources

within cluster. It is critical that resources be properly managed for efficient

execution of client requests in the cluster. The two main actions using the cluster

object are:

1. Register or unregister the presence of a resource name at a node.

2. Request suspension or resumption of service.

8.1 Registering and Unregistering Resource Names

Recall that when the cmsd looks nodes that can provide a resource name that it has

not yet seen, it asks each node whether or not it has the particular resource. Nodes

responding that they have the resource are eligible to receive client requests for that

resource. This mechanism is used to automatically register (affirmative response)

and unregister (no response) resource names relative to the set of nodes in the

cluster. All of this is driven by calling XrdSsiProvider::QueryResource().

Since automatic registration is specific to a point in time, the cluster object has

methods that must be used by a node to inform the cluster manager of changes in

the registration status of its resources. Specifically,

XrdSsiCluster::Added(const char *name, bool pend=false)

must be called whenever a new resource becomes available or has changed its

pending status since the last time the node was queried about the resource

name. Since it is inconvenient to track whether or not a node was asked about

the name, the Added() method may be called at any time whether or not the

node was queried about the resource. This allows registrations to be current

and accurate.

XrdSsiCluster::Removed(const char *name)

must be called whenever a new resource becomes unavailable since the last

time the node was queried about the resource name. Since it is inconvenient

to track whether or not a node was asked about the name, the Removed()

method may be called at any time whether or not the node was queried about

the resource. This allows registrations to be current and accurate.

Referemce Scalable Service Interface

78 13-February-2018 SSI Reference

Failure to properly use these two methods may cause clients to be sent to the wrong

nodes or being told a resource does not exist even when it does. While the former is

auto-correcting with an added latency cost the latter is not correctable and the client

will normally declare a fatal error.

8.2 Synchronizing resources availability between SSI processes

In a clustered environment, each XRootD server is paired with a cmsd server. The

cmsd is responsible for managing resource accessibility by informing the cluster

redirectors which resources it has (when queried) and reporting the addition and

removal of resources. Generally, XRootD is the process that actually adds or

removes resources and when this happens, it informs its companion cmsd which

resource was added or removed. The companion cmsd then relays that information

to the cluster’s redirectors. See the previous section on how the information is

relayed from the XRootD using the cluster management object.

In most cases the SSI plug-in keeps a map synthetic resource names and uses the

map to indicate which resource names are valid for the server node in question.

When the map is shared between the XRootD process and the cmsd process, any

changes to the map initiated by the XRootD-side plug-in are immediately visible to

the cmsd process and no additional action is needed to properly track resource

availability. When the map is not shared (i.e. two separate maps exist – one for the

XRootD plug-in and one for the cmsd plug-in) it is critical that both maps be kept

synchronized.

The SSI framework provides a mechanism to keep unshared maps synchronized via

special callback methods in the XrdSsiProvider object. The two virtual methods are:

XrdSsiProvider::ResourceAdded(const char *name)

which called by the cmsd when the XRootD side plug-in calls the

XrdSsiCluster::Added() method.

XrdSsiProvider::ResourceRemoved(const char *name)

which called by the cmsd when the XRootD side plug-in calls the

XrdSsiCluster::Removed() method.

Scalable Service Interface Reference

SSI Reference 13-February-2018 79

You must provide implementations to these two virtual methods in the

XrdSsiProvider object passed to the cmsd via the global pointer

XrdSsiProviderLookup if you wish to field these events and keep the cmsd-side

map synchronized with the XRootD-side map.

The SSI framework assumes that resource maps are shared and, by default, disables

cmsd-side callbacks for addition and deletion of resources. If you need to use this

feature, you must enable it by adding the “-arevents” option to the oss.statlib

directive in your configuration file (see clustered configuration).

Since the addition and removal of resources requires a linear timeline, the

ResourceAdded() and ResourceRemoved() callbacks are single-threaded. Upon

return from the callback, the cmsd relays the information to the cluster redirectors.

You should make sure that the time it takes to update a map is short and you should

not do any unrelated processing using the callback thread.

8.3 Suspending and Resuming Service

A node has control of whether or not it is willing to accept client requests. At initial

start-up the cluster manager assumes all nodes in the cluster can accept client

requests unless told otherwise. A node can control it status by using the following

XrdSsiCluster methods:

 Suspend(bool perm=false)

may be called to prohibit clients from being sent to the issuing node in the

future. When perm is true, this status persists across node restarts. Otherwise,

the suspension is cancelled after a server at the node restarts.

Resume(bool perm=true)

may be called to resume service after a previous Suspend() call. When called

with perm equal to true, any permanent suspension undone. Passing a value

of false, maintains the previous suspension status upon server restart.

Permanent suspensions are meant to easily implement maintenance mode. Should a

server’s node enter maintenance the server can be permanently suspended to make

sure that an inadvertent restart does not resume service before the completion of

maintenance.

Referemce Scalable Service Interface

80 13-February-2018 SSI Reference

Since suspensions are time driven events, it is possible that client requests have been

directed to the server before the suspension is acknowledged by the cluster

manager. So, it is normal to still get several requests after calling Suspend(). In this

case, the server may redirect these requests back to the cluster manager for

reprocessing.

Suspend() and Resume() can be used to manage the load at the server. Three special

helper methods are available to make it easier to do so. These XrdSsiCluster

methods are based on the concept of unit of service and are used as follows:

Resource(int n)

is used to declare n arbitrary units of available service. While it is normally

called once, it can be called any number of times. Each invocation returns the

resource unit value that was previously established.

Reserve(int n=1)

is used to declare that the server has undertaken a task that will use n units of

service. The default is one unit. The amount is deducted from the available

service units and should the remainder fall below 1; Suspend() is

automatically called to temporarily suspend service.

Release(int n=1)

is used to declare that the server has completed a task that required the n

units of service. The default is one unit. The amount is added to the available

service units. If the amount available transitions from a non-positive amount

to a positive value; Resume() is automatically called to allow new client

requests to be sent to the server.

Scalable Service Interface Reference

SSI Reference 13-February-2018 81

9 Starting the SSI Server

Starting an SSI server is equivalent to starting an xrootd in stand-alone node or an

xrootd-cmsd pair in a clustered node. There are numerous command line options for

starting each type of server. Refer to the Xrd/Xrootd and cmsd reference manuals for

details on these options. With few exceptions, they are the same for xrootd and cmsd

daemons. There is one common option that deserves special treatment here. The

option allows you to pass command line arguments to the XrdSsiProvider:: Init()

method. When starting a server-side daemon you may specify command line

arguments to be passed to the SSI plug-in as follows.

{xrootd | cmsd} [options] [arguments] -+xrdssi options_arguments

The options_arguments tokens are passed to the XrdSsiProvider::Init() method via

the argv parameter with argc set to the actual number of arguments. The argv[0]

token is the same as the one passed to the daemon (i.e. executable path). The

options_arguments tokens end either at the end of the command line or when another

“-+” option is encountered. The -+xrdssi option must appear after all of the

xrootd/cmsd specific options and arguments have been specified on the command

line.

Document Changes Scalable Service Interface

SSI Reference 13-February-2018 83

10 Document Change History

9 Feb 2016

 Document produced.

13 Feb 2018

 Document XrdSsiProvider::ResourceAdded() and

XrdSsiProvider::ResourceRemoved callback methods.

 Explain how to synchronize resource maps between the XRootD and

cmsd processes.

