

The XRootD Protocol

Version 4.0.0

Andrew Hanushevsky

13-June-2021

Protocol

XRootD Protocol Version 4.0.0 Page: 2

©2004-2021 by the Board of Trustees of the Leland Stanford, Jr., University

All Rights Reserved

Produced under contract DE-AC02-76-SFO0515 with the Department of Energy

The protocol specification described in this document falls under BSD license terms.

The specification may be used for any purpose whatsoever.

Use of this specification must cite the original source -- xrootd.org.

Binary definitions in header file XProtocol.hh superceed any such definitions in this document.

 Contents

XRootD Protocol Version 4.0.0 Page: 3

1 Contents
1 Contents .. 3
2 Request/Response Protocol .. 7

2.1 Format of Client-Server Initial Handshake .. 7
2.2 Data Serialization ... 9
2.3 Client Request Format ..11

2.3.1 Valid Client Requests ...13
2.3.2 Valid Client Paths ...14
2.3.3 Client Recovery from Server Failures ..15

2.4 Server Response Format ..17
2.4.1 Valid Server Response Status Codes ..18
2.4.2 kXR_attn Response Format ...19

2.4.2.1 kXR_attn Response for kXR_asyncms Client Action .. 20
2.4.2.2 kXR_attn Response for kXR_asynresp Client Action .. 21

2.4.3 kXR_authmore Response Format ...23
2.4.4 kXR_error Response Format ...24

2.4.4.1 Error Codes and Recovery Actions ... 25
2.4.5 kXR_ok Response Format ..27
2.4.6 kXR_oksofar Response Format ...28
2.4.7 kXR_redirect Response Format ...29
2.4.8 kXR_status Response Format ..32

2.4.8.1 Valid ResponseTypes .. 34
2.4.9 kXR_wait Response Format ..35
2.4.10 kXR_waitresp Response Format ...36

2.5 Binary Definitions of Status, Error and Response Subcodes ..37
2.5.1 Response Status Codes ...37
2.5.2 kXR_attn Subcodes ...37
2.5.3 kXR_redirect Subcodes ..37
2.5.4 kXR_status Subcodes and Other Values ..37
2.5.5 Error Codes ..38

3 Transport Layer Security (TLS) Support ...39
3.1 Client-Server interactions to unilaterally use TLS..40
3.2 Client-Server interactions to use TLS only when required ...40

4 Server Request Format ...41
4.1 kXR_auth Request ..41
4.2 kXR_bind Request ..43

4.2.1 TLS Considerations ..44
4.3 kXR_chkpoint Request ...45

4.3.1 kXR_ckpBegin, kXR_ckpCommit, and kXR_ckpRollback Subcodes47
4.3.2 kXR_ckpQuery Subcode ..49
4.3.3 kXR_ckpXeq Subcode ..51

4.4 kXR_chmod Request ..53
4.5 kXR_close Request ..55
4.6 kXR_dirlist Request ..57
4.7 kXR_endsess Request ...60
4.8 kXR_fattr Request ...61

4.8.1 Layout of namevec ...62

Protocol

XRootD Protocol Version 4.0.0 Page: 4

4.8.2 Layout of valuvec ...63
4.8.3 kXR_fattr Request – Delete Subcode ..65
4.8.4 kXR_fattr Request – Get Subcode ...67
4.8.5 kXR_fattr Request – List Subcode ...69
4.8.6 kXR_fattr Request – Set Subcode ..71

4.9 kXR_gpfile Request ..73
4.10 kXR_locate Request ..77
4.11 kXR_login Request ...81

4.11.1 Additional Login CGI Tokens ...84
4.12 kXR_mkdir Request ..85
4.13 kXR_mv Request ...87
4.14 kXR_open Request ..89

4.14.1 Additional Open CGI Tokens ...93
4.15 kXR_ping Request ..95
4.16 kXR_pgread Request ..97

4.16.1 Error recovery ...100
4.16.1.1 Client .. 100
4.16.1.2 Server ... 100

4.16.2 Unaligned reads ..101
4.16.3 Backward Compatability ...102

4.17 kXR_pgwrite Request ...103
4.17.1 Error recovery ...106

4.17.1.1 Client .. 106
4.17.1.2 Server ... 106

4.17.2 Unaligned writes ...108
4.17.3 Backward Compatability ...108

4.18 kXR_prepare Request ...109
4.19 kXR_protocol Request ..113

4.19.1 Client’s expect setting & Server’s TLS Requirement Response121
4.19.2 Protocol Security Requirements vs Response Implications ..123

4.20 kXR_query Request ..125
4.20.1 KXR_query Checksum Cancellation Request ...129
4.20.2 KXR_query Checksum Request ..131

4.20.2.1 Additional Query Checksum CGI Tokens ... 132
4.20.3 KXR_query Configuration Request ..133

4.20.3.1 Format for Query Config cms .. 136
4.20.3.2 Format for Query Config role... 137
4.20.3.3 Format for Query Config xattrs ... 137

4.20.4 KXR_query Opaque Request ..139
4.20.5 KXR_query Space Request ..141
4.20.6 KXR_query Statistics Request ...143
4.20.7 KXR_query Visa Request ...147
4.20.8 KXR_query Xattr Request ..149

4.21 kXR_read Request ...151
4.22 kXR_readv Request ..155
4.23 kXR_rm Request ...159
4.24 kXR_rmdir Request ..160
4.25 kXR_set Request ..161

 Contents

XRootD Protocol Version 4.0.0 Page: 5

4.25.1 Valid kXR_set Values ...163
4.26 kXR_sigver Request ..165

4.26.1 Signing a request ...167
4.26.2 Verifying a signed request ...168

4.27 kXR_stat Request ..169
4.27.1 Additional Stat CGI Tokens ..172

4.28 kXR_statx Request ..173
4.29 kXR_sync Request ..175
4.30 kXR_truncate Request ..177
4.31 kXR_write Request ...179
4.32 kXR_writev Request ...181

5 The Security Framework ...183
5.1 Framework for Transport Layer Protocols ..187
5.2 Request Verification ...188

6 Document Change History ..189

Request/Response Protocol

XRootD Protocol Version 4.0.0 Page: 7

2 Request/Response Protocol

2.1 Format of Client-Server Initial Handshake

When a client first connects to the XRootD server, it should perform a special

handshake. This handshake should determine whether the client is

communicating using XRootD protocol or another protocol hosted by the server.

The handshake consists of the client sending 20 bytes, as follows:

kXR_int32 0

kXR_int32 0

kXR_int32 0

kXR_int32 4 (network byte order)

kXR_int32 2012 (network byte order)

XRootD protocol, servers should respond, as follows:

streamid: kXR_char smid[2]

status: kXR_unt16 0

msglen: kXR_int32 rlen

msgval1: kXR_int32 pval

msgval2: kXR_int32 flag

Where:

smid initial streamid. The smid for the initial response is always two null

characters (i.e., ‘\0’);

rlen binary response length (e.g., 8 for the indicated response).

pval binary protocol version number.

flag additional bit-encoded information about the server; as follows:

 kXR_DataServer - 0x00 00 00 01 This is a data server.

 KXR_LBalServer - 0x00 00 00 00 This is a load-balancing server.

Protocol

XRootD Protocol Version 4.0.0 Page: 8

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The particular response format was developed for protocol version 2.0

and does not convey all of the information to capture features provided by

subsequent protocol versions. In order to provide backward compatibility,

this response format has been kept. The recommended mechanism to

obtain all of the information that may be needed is to “piggy-back” a

kXR_protocol Request with the handshake (i.e. send the handshake and

the request with a single write).

3) All twenty bytes should be received by the server at one time. All known

TCP implementations should guarantee that the first message is sent

intact if all twenty bytes are sent in a single system call. Using multiple

system calls for the first message may cause unpredictable results.

 Protocol

XRootD Protocol Version 4.0.0 Page: 9

2.2 Data Serialization

All data sent and received is serialized (i.e., marshaled) in three ways:

1. Bytes are sent unaligned without any padding,

2. Data type characteristics are predefined (see table below), and

3. All integer quantities are sent in network byte order (i.e, big endian).

XRootD Type Sign Bit Length Bit Alignment Typical Host Type
kXR_char8 unsigned 8 8 unsigned char

kXR_unt16 unsigned 16 16 unsigned short

kXR_int32 signed 32 32 long
1

kXR_int64 signed 64 64 long long

Table 1: XRootD Protocol Data Types

Network byte order is defined by the Unix htons() and htonl() macros for host to

network short and host to network long, respectively. The reverse is defined by

the ntohs() and ntohl() macros. Many systems do not define the long long

versions of these macros. XRootD protocol requires that the POSIX version of

long long serialization be used, as defined in the following figures. The OS-

dependent isLittleEndian() function returns true if the underlying hardware

using little endian integer representation.

unsigned long long htonll(unsigned long long x)

 {unsigned long long ret_val;

 if (isLittleEndian())

 {*((unsigned long *)(&ret_val) + 1) =

 htonl(*((unsigned long *)(&x)));

 *(((unsigned long *)(&ret_val))) =

 htonl(*(((unsigned long *)(&x))+1));

 } else {

 *((unsigned long *)(&ret_val)) =

 htonl(*((unsigned long *)(&x)));

 *(((unsigned long *)(&ret_val)) + 1) =

 htonl(*(((unsigned long *)(&x))+1));

 }

 return ret_val;

 };

Figure 1: POSIX Host to Network Byte Order Serialization

1 As of this writing, the long type has taken on several meanings for 64-bit architectures. Some

machines define a long to be 64-bits and int 32-bits while some others reverse the definition.

Protocol

XRootD Protocol Version 4.0.0 Page: 10

unsigned long long ntohll(unsigned long long x)

 {unsigned long long ret_val;

 if (isLittleEndian())

 {*((unsigned long *)(&ret_val) + 1) =

 ntohl(*((unsigned long *)(&x)));

 *(((unsigned long *)(&ret_val))) =

 ntohl(*(((unsigned long *)(&x))+1));

 } else {

 *((unsigned long *)(&ret_val)) =

 ntohl(*((unsigned long*)(&x)));

 (((unsigned long)(&ret_val)) + 1) =

 ntohl(*(((unsigned long*)(&x))+1));

 }

 return ret_val;

 };

Figure 2: Network and Host Byte Order Seialization

More compact and efficient, though OS restricted (i.e., Solaris and Linux),

versions of 64-bit network byte ordering routines are given in the following

figure.

#if defined(__sparc) || __BYTE_ORDER==__BIG_ENDIAN

#ifndef htonll

#define htonll(x) x

#endif

#ifndef ntohll

#define ntohll(x) x

#endif

#else

#ifndef htonll

#define htonll(x) __bswap_64(x)

#endif

#ifndef ntohll

#define ntohll(x) __bswap_64(x)

#endif

Figure 3: Network and Host Byte Ordering Macros

Client Requests Protocol

XRootD Protocol Version 4.0.0 Page: 11

2.3 Client Request Format

Requests sent to the server are a mixture of ASCII and binary. All requests, other

than the initial handshake request, have the same format, as follows:

kXR_char streamid[2]
kXR_unt16 requestid

kXR_char parms[16]
kXR_int32 dlen
kXR_char data[dlen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

requestid

 binary identifier of the operation to be performed by the server.

parms parameters specific to the requestid.

dlen binary length of the data portion of the message. If no data is present, then

the value is zero.

data data specific to the requestid. Not all requests have associated data. If the

request does have data, the length of this field is recorded in the dlen field.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) All XRootD client requests consist of a standard 24-byte fixed length

message. The 24-byte header may then be optionally followed by request

specific data.

3) Stream id’s are arbitrary and are assigned by the client. Typically these

id’s correspond to logical connections multiplexed over a physical

connection established to a particular server.

4) The client may send any number of requests to the same server. The order

in which requests are performed is undefined. Therefore, each request

Protocol Client Requests

XRootD Protocol Version 4.0.0 Page: 12

should have a different streamid so that returned results may be paired up

with associated requests.

5) Requests sent by a client over a single physical connection may be

processed in an arbitrary order. Therefore the client is responsible for

serializing requests, as needed.

Client Requests Protocol

XRootD Protocol Version 4.0.0 Page: 13

2.3.1 Valid Client Requests

Requestid Value Login? Auth? Redirect? Arguments

kXR_auth 3000 y n n authtype, authinfo

KXR_bind 3024 n n n sessid

kXR_chkpoint 3012 y - n fhandle, length, offset

kXR_chmod 3002 y y yes mode, path

kXR_close 3003 y - n fhandle

KXR_dirlist 3004 y y y path

KXR_endsess 3023 y - n sessid

kXR_fattr 3020 y y y Arguments vary by subcode

kXR_gpfile 3005 y optional y Arguments vary by subcode

kXR_locate 3027 y y y path

kXR_login 3007 n n n userid, token

kXR_mkdir 3008 y y y mode, path

kXR_mv 3009 y y y old_name, new_name

kXR_open 3010 y y y mode, flags, path

kXR_pgread 3030 y - y fhandle, pathid, length, offset

kXR_pgwrite 3026 y - y fhandle, pathid, length, offset

kXR_ping 3011 y n n

kXR_prepare 3021 y y n paths

kXR_protocol 3006 n n n

kXR_query 3001 y y y args

kXR_read 3013 y - y fhandle, pathid, length, offset

kXR_readv 3025 y - y fhandle, pathid, length, offset

kXR_rm 3014 y y y path

kXR_rmdir 3014 y y y path

kXR_set 3018 y y y info

kXR_sigver 3029 y y n signature

kXR_stat 3017 y - n fhandle

kXR_stat 3017 y y y path

kXR_statx 3022 y y n pathlist

kXR_sync 3016 y - n fhandle

kXR_truncate 3028 y - n fhandle, length

kXR_truncate 3028 y - y path, length

kXR_write 3019 y - y fhandle, pathid, length, offset, data

kXR_writev 3031 y y n fhandle, length, offset

 Table 2: Valid Client Requests

Protocol Client Requests

XRootD Protocol Version 4.0.0 Page: 14

2.3.2 Valid Client Paths

The XRootD server accepts only absolute paths where a path may be specified.

Relative paths should be resolved by the client interface prior to sending them to

XRootD. This means that the interface should handle a virtual “current working

directory” to resolve relative paths should they arise.

Path names are restricted to the following set of characters:

 Letters (upper or lower case),

 Digits (0-9), and

 Special characters: !@#%^_-+=:./

In general, paths may not contain shell meta-characters.

Any path may be suffixed by CGI information. The format corresponds to that

defined in RFC 3875. However, the protocol does not allow URL encoded

characters (i.e. %xx). The meaning of any CGI element that is not specified in this

document is implementation specific.

mailto:!@#%^_-+=:./

Client Requests Protocol

XRootD Protocol Version 4.0.0 Page: 15

2.3.3 Client Recovery from Server Failures

A server failure should be recognized when the server unexpectedly closes its

TCP/IP connection or does not respond for an extended period of time. Should

this happen, the client may recover all operations by treating the termination of

the connection or unresponsiveness as a redirection request (see page 29) to the

initial XRootD server for all streams associated with the closed TCP/IP

connections.

The initial XRootD server is defined as the first manager or the last meta-

manager encountered. In the absence of any manager, the first data server

encountered. See the kXR_protocol request on how to determine a node’s type.

Because many clients are likely to be affected by a server failure, it is important

that clients pace their reconnection to the initial XRootD server. One effective

way to do this is to use the last three bits of the client’s IP address as the number

of seconds to wait before attempting a reconnection. It is up to the client to

determine either the number of times or the time window in which reconnections

should be attempted before failure is declared. Typical values are 16 attempts or

3 minutes, whichever is longer.

Note that it may not be possible to recover in this way for files that were opened

in update mode. Clients who do not provide proper transactional support

generally cannot recover via redirection for any read/write resources.

Server Responses Protocol

XRootD Protocol Version 4.0.0 Page: 17

2.4 Server Response Format

All responses, including the initial handshake response, have the same leading

format, as follows:

kXR_char streamid[2]
kXR_unt16 status
kXR_int32 xlen
kXR_char xtend[xlen]

Where:

streamid

 binary identifier that is associated with this request stream corresponding

to a previous request.

status binary status code indicating the request completion state. The next

section describes possible status codes.

xlen binary length of the xtend portion of the message. If no xtend is present,

then the value should be zero.

xtend data specific to the requestid. Not all responses have associated data. If the

response does have data, the length of this field should be present in the

xlen field.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses

is undefined. The client should appropriately pair responses with requests

using the streamid value.

3) Unsolicited responses are server requests for client configuration changes

to make better use of the overall system. Since these responses do not

correspond to any request, the streamid value has no meaning.

4) Unsolicited responses should be immediately acted upon. They should

not be paired with any previous request.

Protocol Server Responses

XRootD Protocol Version 4.0.0 Page: 18

2.4.1 Valid Server Response Status Codes

The following table lists all possible responses and their arguments.

Status Response Data
kXR_attn Parameters to direct immediate client action
kXR_authmore Authentication specific data
kXR_error Error number and corresponding ASCII message text
kXR_ok Depends on request (this is predefined to be the value 0)
KXR_oksofar Depends on request
kXR_redirect Target port number and ASCII host name or URL
kXR_status Depends on request
kXR_wait Binary number of seconds & optional ASCII message
kXR_waitresp Binary number of seconds

Notes

1) Any request may receive any of the previous status codes.

2) The following sections detail the response format used for each status

code.

Server Responses Protocol

XRootD Protocol Version 4.0.0 Page: 19

2.4.2 kXR_attn Response Format

kXR_char pad[2]
kXR_unt16 kXR_attn
kXR_int32 plen
kXR_int32 actnum
kXR_char parms[plen-4]

Where:

plen two bytes of padding required by the standard response format. These

two bytes can be ignored for this particular response code.

plen binary length of the parms portion of the message (i.e., the subsequent

bytes).

actnum

 binary action code describing the action that the client is to take. These

are:

 kXR_asyncms - The client should send the indicated message to the

 console. The parms contain the message text.

 kXR_asynresp - The client should use the response data in the message

to complete the request associated with the indicated

streamid.

parms parameter data, if any, that is to steer client action.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system

performance and to notify clients of any impending events. All responses

except for kXR_asynresp, do not correspond to any client request and

should not be paired up with any request.

3) When kXR_attn is received, the client should perform the requested

action and indicated by the actnum value.

Protocol Server Responses

XRootD Protocol Version 4.0.0 Page: 20

2.4.2.1 kXR_attn Response for kXR_asyncms Client Action

kXR_char pad[2]
kXR_unt16 kXR_attn
kXR_int32 mlen
kXR_int32 kXR_asyncms
kXR_char msg[mlen-4]

Where:

mlen binary length of the following action code and message.

msg message to be sent to the terminal. The mlen value, less four, indicates the

length of the message. The ending null byte (‘\0’) should be transmitted

and included in the message length.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system

performance and to notify clients of any impending events. This response

does not correspond to any client request and should not be paired up

with any request.

3) When kXR_attn is received with the kXR_asyncms action code, the

following options should be implemented:

a. simply write the indicated message to the terminal, or

b. allow the application to register a callback to capture the message.

Server Responses Protocol

XRootD Protocol Version 4.0.0 Page: 21

2.4.2.2 kXR_attn Response for kXR_asynresp Client Action

kXR_char pad[2]
kXR_unt16 kXR_attn
kXR_int32 plen
kXR_int32 kXR_asynresp
kXR_char reserved[4]

kXR_char streamid[2]

kXR_unt16 status

kXR_int32 dlen

kXR_char data[dlen]

Where:

plen binary length of the following action code and response.

streamid

 stream identifier associated with a previously issued request that received

a kXR_waitresp response.

status binary status code indicating how the request completed. The codes

definitions are identical as to those described for synchronous responses.

dlen binary length of the data portion of the message. If no data is present, then

the value is zero.

data data specific to the request. Not all responses have associated data. If the

response does have data, the length of this field is recorded in the dlen

field.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system

performance and to notify clients of any impending events.

3) Unlike other asynchronous events, this response is associated with a

previous request and the response data ould be used to either continue or

complete that request, based on the status value.

4) The rlen-dlen should always equal a value of 16.

Server Responses Protocol

XRootD Protocol Version 4.0.0 Page: 23

2.4.3 kXR_authmore Response Format

kXR_char streamid[2]
kXR_unt16 kXR_authmore
kXR_int32 dlen
kXR_char data[dlen]

Where:

streamid

 binary identifier that is associated with this request stream corresponding

to a previous request.

dlen binary length of the data portion of the message (i.e., the subsequent

bytes).

data data, if any, required to continue the authentication process.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses

is undefined. The client should appropriately pair responses with requests

using the streamid value.

3) The kXR_authmore response code is issued only for those authentication

schemes that require several handshakes in order to complete (e.g., .x500).

4) When a kXR_authmore response is received, the client should call the

appropriate authentication continuation method and pass it data, if

present. The output of the continuation method should be sent to the

server using another kXR_auth request. This handshake continues until

either the continuation method fails or the server returns a status code of

kXR_error or kXR_ok.

5) Refer to the description of the security framework for detailed

information.

Protocol Server Responses

XRootD Protocol Version 4.0.0 Page: 24

2.4.4 kXR_error Response Format

kXR_char streamid[2]
kXR_unt16 kXR_error
kXR_int32 dlen
kXR_int32 errnum

kXR_char errmsg[dlen-4]

Where:

streamid

 binary identifier that is associated with this request stream corresponding

to a previous request.

dlen binary length of the data portion of the message (i.e., the subsequent

bytes).

errnum

 binary error number indicating the nature of the problem encountered

when processing the request.

errmsg

 human-readable null-terminated message that describes the error. This

message may be displayed for informational purposes.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Since the error message is null-terminated, dlen includes the null byte in

its count of bytes that were sent.

3) Since requests may be completed in any order, the ordering of responses

is undefined. The client should appropriately pair responses with requests

using the streamid value.

Server Responses Protocol

XRootD Protocol Version 4.0.0 Page: 25

2.4.4.1 Error Codes and Recovery Actions

kXR_Error

Status Code in errnum

Meaning

Redirector

Recovery

Server

Recovery
kXR_ArgInvalid A request argument was not valid n/a n/a
kXR_ArgMissing Required request argument was not provided n/a n/a
kXR_ArgTooLong A request argument was too long (e.g., path) n/a n/a
kXR_AttrNotFound The requested file attribute does not exist n/a n/a
kXR_AuthFailed Authentication failed H H
kXR_BadPayload The request arguments were malformed n/a n/a
kXR_Cancelled The operation was cancelled by the system n/a n/a
kXR_ChkSumErr The checksum does not match n/a n/a
kXR_Conflict Request cannot be executed due to a conflict n/a n/a
kXR_DecryptErr Data could not be decrypted n/a n/a
kXR_FileLocked File is locked, open request was rejected n/a n/a
kXR_FileNotOpen File if not open for the request (e.g., read) n/a n/a
kXR_FSError The file system indicated an error n/a A
kXR_fsReadOnly The file system is marked read-only. n/a n/a
kXR_Impossible The request cannot be executed due to exigent

conditions

n/a n/a

kXR_inProgress Operation already in progress B B
kXR_InvalidRequest The request code is invalid n/a n/a
kXR_IOError An I/O error has occurred n/a A
kXR_isDirectory Object being opened with kXR_open is a

directory

n/a n/a

kXR_ItExists Cannot create new object as it already exists n/a n/a
kXR_NoMemory Insufficient memory to complete the request C B
kXR_NoSpace Insufficient disk space to write data n/a n/a
kXR_NotAuthorized Client is not authorized for the request n/a E
kXR_NotFile Object being opened with kXR_open is not a

file.

n/a n/a

kXR_NotFound The requested file was not found n/a D
kXR_noReplicas No more replicas exist. n/a n/a
kXR_noserver There are no servers available to process the

request

F n/a

kXR_overQuota Space quota exceeded n/a n/a
kXR_overloaded Server is overloaded C D
kXR_ReqTimedOut Request could not be completed in time n/a D
kXR_ServerError An internal server error has occurred C A
kXR_SigVerErr Request signature could not be verified G G
kXR_TooManyErrs Request has excessive errors to continue n/a D
kXR_TLSRequired Request requires a TLS connection n/a n/a
kXR_Unsupported The request is valid but not supported n/a E

Protocol Server Responses

XRootD Protocol Version 4.0.0 Page: 26

A. Go back to the redirector and ask for a different server. kXR_refresh

should not be turned on. The “tried=” CGI value should indicate the

hostname of the failing server.

B. Generally, this represents a programming error. However, should an

operation subject to a callback response be retried prior to the callback,

this status code may be returned. Clients should honor server’s callback

requests and wait for a callback response. Therefore, this error can be

ignored as long as a callback is outstanding. Otherwise, it should be

treated as a fatal error.

C. If the redirector is replicated, a different redirector should be tried. If all

redirectors provide the same response, a fatal error should be reported. In

the case of intermediate redirectors (i.e., a redirector transferring the

request to another redirector), the recovery may be attempted by treating

the intermediate as a server and performing the action outline in A.

D. Go back to the redirector and ask for a different server. kXR_refresh

should be turned on. The “tried=” CGI value should indicate the hostname

of the failing server. This should normally be done only once.

E. If the redirector is a meta-manager or is virtual (i.e. actually a metalink)

then go back to the redirector and ask for a different server. The “tried=”

CGI value should indicate the hostname of the failing server. The

kXR_refresh should not be turned on. For kXR_NotAuthorized, recovery

should be attempted no more than three times.

F. If the redirector is virtual (i.e. actually a metalink), the follow the actions

listed under E. Real redirectors have a real-time view of all available

resources and the inability to allocate a resource indicates that none are

useable for a request. Retrying the request is highly likely to be ineffective.

Virtual redirectors only have a static view of resources and cannot

determine if using another resource will succeed without actually trying

to use that resource. Thus, all failures are retryable.

G. Signature verification errors due to transport corruption are retryable as

such corruptions are transient. There is no way to determine if a failure is

due to corruption or active compromise. The request should be retried

once or twice.

H. Authentication failures may be due to server missconfiguration. If

another server or redirector is available, the operation may be retried.

Server Responses Protocol

XRootD Protocol Version 4.0.0 Page: 27

2.4.5 kXR_ok Response Format

kXR_char streamid[2]
kXR_unt16 kXR_ok
kXR_int32 dlen
kXR_char data[dlen]

Where:

streamid

 binary identifier that is associated with this request stream corresponding

to a previous request.

dlen binary length of the data portion of the message (i.e., the subsequent

bytes).

data result, if any, of the corresponding request.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses

is undefined. The client should appropriately pair responses with requests

using the streamid value.

3) The kXR_ok response indicates that the request fully completed and no

additional responses should be forthcoming.

Protocol Server Responses

XRootD Protocol Version 4.0.0 Page: 28

2.4.6 kXR_oksofar Response Format

kXR_char streamid[2]
kXR_unt16 kXR_oksofar
kXR_int32 dlen
kXR_char data[dlen]

Where:

streamid

 binary identifier that is associated with this request stream corresponding

to a previous request.

dlen binary length of the data portion of the message (i.e., the subsequent

bytes).

data result, if any, of the corresponding request.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses

is undefined. The client should appropriately pair responses with requests

using the streamid value.

3) The kXR_oksofar response indicates that the server is providing partial

results and the client should be prepared to receive additional responses

on the same stream. This response is primarily used when a read request

would transmit more data than the internal server segment size.

4) Sending requests using the same streamid when a kXR_oksofar status

code has been returned may produced unpredictable results. A client

should serialize all requests using the streamid in the presence of partial

results.

5) Any status code other than kXR_oksofar indicates the end of transmission

Server Responses Protocol

XRootD Protocol Version 4.0.0 Page: 29

2.4.7 kXR_redirect Response Format

kXR_char streamid[2]
kXR_unt16 kXR_redirect
kXR_int32 dlen
kXR_int32 port | 0xffffffff | < 0

kXR_char host[?[opaque][?token]][dlen-4] | url

Where:

streamid

 binary identifier that is associated with this request stream corresponding

to a previous request.

dlen binary length of the data portion of the message (i.e., the subsequent

bytes).

port binary port number to which the client should connect. If the value is zero,

the default XRootD port number should be used. If the value is negative,

then the text after port contains a standard URL that should be used to

effect a new connection. This should only occur if the client has indicated

that URL redirection responses are acceptable during the most recent

kXR_login request to the redirecting server. See the usage notes when

0xffffffff should be used as a negative port number.

host ASCII name of the to which the client should connect. The host does not

end with a null (\0) byte. The host should be interpreted as a standard

URL if port is negative (see above).

opaque optional ASCII token that, when present, should be delivered to the new

host as opaque information added to the file name2 associated with the

operation being redirected. The opaque, if present, is separated from the

host by a single question mark. The opaque does not end with a null (\0)

byte but may end with a question mark (see token below). Therefore,

opaque may never contain a question mark.

2 In the case of kXR_mv, two file names are present. The opaque information should be added to

the second of the two file names.

Protocol Server Responses

XRootD Protocol Version 4.0.0 Page: 30

token optional ASCII token that, when present, should be delivered to the new

host during the login phase, if one is needed (i.e. established connections

to the specified host may be re-used without a login). The token, if present,

is separated from the host by a two question marks. The first question

mark may be followed by opaque information. If none is present, another

question mark immediately follows the first one. The token does not end

with a null (\0) byte.

url when a client indicates that it supports multi-protocol redirects, the server

may respond with an actual url. In this case, the port value is set to -1.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses

is undefined. The client should appropriately pair responses with requests

using the streamid value.

3) After 256 redirect responses within 10 minutes on the same logical

connection, the client should declare an internal system error since it is

obvious that effective work is not being performed.

4) The client should be prepared to handle a redirect response at any time. A

redirect response requires that the client

a. Decompose the response to extract the port number, host name, and

possible token value.

b. Possibly close the connection of the current host, if the current host

is a data server and this is the last logical connection to the server.

Otherwise, if this is the first load-balancing server encountered in

the operation sequence, the connection should remain open since a

load-balancing server always responds with a redirect.

c. Establish a new logical connection with the indicated host at the

specified or default port number. If a physical connection already

exists and is session compatible with the new logical connection;

the existing physical connection should be reused and the next step

(i.e. handshake and login) should be skipped.

d. Perform the initial handshake, login with token (see kXR_login

description), and authentication (see kXR_auth description).

e. If the redirection occurred for a request using a file handle (i.e.,

fhandle) then a new file handle should be obtained.

Server Responses Protocol

XRootD Protocol Version 4.0.0 Page: 31

i. A kXR_open request should be issued using the same file

name and options as was originally used.

ii. The returned file handle should be used for the request that

is to be re-issued as well as all subsequent requests relating o

the file.

f. Re-issue the request that was redirected.

5) Historically, clients tested the port for the exact value of -1 (i.e. 0xffffffff)

to determine whether a redirect URL or a shortened host specification was

present. This prevented additional information frm being passed in the

port field. To provide backward compatability, a special kXR_login

capability was introduced, kXR_redirflags, that indicates the client simply

checks for a negative value and the low order 31 bits may be used as

redirect flags. Servers should always use -1 unless the client indicates that

it is capable of handling any negative value by setting the kXR_redirflags

capability in the login request.

6) The following redirect flags are defined:

Flag Meaning

kXR_recoverWrts Write recovery for copy targets is possible at the

server that set this redirect flag.

kXR_collapseRedir If the redirect target is in the same address group as

the redirecting server, make the target the primary

address for all future contacts for this address

group.

7) Normally, the protocol limits write recovery to the server to which the

write was directed. The kXR_recoverWrts flag allows write recovery to

occur at a different server as long as that server is in the redirect path

leading to a server executing a write operation.

8) A DNS host name may be assigned multiple addresses, each of which is a

different physical endpoint. All servers under that DNS name should be

considered to belong to the same address group. Any server in that

address group may request that one of those servers be designated as the

primary target using the kXR_collapseRedir flag. This option is meant to

support replicated services in which there is a primary leader chosen by

consensus.

9) Opaque data should be treated as truly opaque. The client should not

inspect nor modify the data in any way.

Protocol Server Responses

XRootD Protocol Version 4.0.0 Page: 32

2.4.8 kXR_status Response Format

kXR_char streamid[2]
kXR_unt16 kXR_status
kXR_int32

kXR_unt32

kXR_char

kXR_char

kXR_char

kXR_char

kXR_int32

kXR_char

resplen (should be >= 16)

crc32c

streamid[2]

requestid

resptype

reserved[4]

dlen

info[resplen-16]

kXR_char data[dlen]

Where:

streamid

 binary identifier that is associated with this request stream corresponding

to a previous request. It is repeated to allow for a quick integrity check of

the streamid before doing more extensive checks.

resplen

 binary length of the response portion of the message (i.e., the subsequent

bytes not including any data portion).

crc32c CRC32-C as defined by the IETF RFC 7143 standard (see the notes for

details) of the resplen-sizeof(crc32c) bytes immediately after crc32c. This

means that the data portion, if any, should not be included in the cr32c

calculation.

requestid

 identifier of the original request. The requestid+kXR_1stRequest should

equal the original request code.

resptype

 binary code identifying the response type. See the subsequent section for

details.

dlen binary length of the data portion of the message, if any. If there is no data

portion then dlen should be zero.

Server Responses Protocol

XRootD Protocol Version 4.0.0 Page: 33

info optional additional response information whose contents should be

interpreted in the context of the requestid and resptype codes. Refer to each

corresponding request to see how to interpret the info, if present. The

length should be calculated as resplen- kXR_statusBodyLen and should

result in a value >= 0.

data result, if any, of the corresponding request.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses

is undefined. The client should appropriately pair responses with requests

using the streamid value.

3) The crc32c should use the CRC32-C polynomial specified in the IETF RFC

7143 standard. This corresponds to the polynomial 0x1edc6f41 or
x
32
+x

28
+x

27
+x

26
+x

25
+x

23
+x

22
+x

20
+x

19
+x

18
+x

14
+x

13
+x

11
+x

10
+x

9
+x

8
+x

6
+1.

4) When kXR_status is received the client should perform an integrity check

on the response, as follows:

a. Verify that the two streamid values are identical, and

b. calculate the CRC32C value of the response and verify that it

matches the value sent by the server in crc32c.

5) When an integrity check fails, the only recourse is to close the connection

and start with a new connection. The reason is that there is no way to

know how much and what kind of data may be in transit, should any of

the length fields be corrupted. Be aware that closing a connection with

active requests causes those requests to be terminated.

Protocol Server Responses

XRootD Protocol Version 4.0.0 Page: 34

2.4.8.1 Valid ResponseTypes

The resptype codes as defined in struct ServerResponseStatus are:

resptype datalen Explanation
kXR_FinalResult >= 0 Request completed as indicated in the

response.
kXR_PartialResult >= 0 Request has partially completed as indicated.
kXR_ProgressInfo == 0 Request is ongoing this is a progress report

only.

Notes

1) The presence of info and data is determined by the particular request being

performed. Refer to the requests returning kXR_status for details.

2) Sending requests using the same streamid when a kXR_status with a

PatrialResult or ProgressInfo restype code has been returned may

produce unpredictable results. A client should serialize all requests using

the streamid until a FinalResult restype is returned by the request.

3) Currently, only kXR_gpfile, kXR_pgread and kXR_pgwrite return

kXR_status. However, clients implementing this version of the protocol

should be implemented to handle any request returning kXR_status.

4) Requests employing kXR_status should never return kXR_ok and

kXR_oksofar as these are essentially subsumed by kXR_status. The use of

other response types is allowed.

5) When kXR_PartialResult or kXR_ProgressInfo is received, the client

should reset the wait timeout to its original value.

Server Responses Protocol

XRootD Protocol Version 4.0.0 Page: 35

2.4.9 kXR_wait Response Format

kXR_char streamid[2]
kXR_unt16 kXR_wait
kXR_int32 dlen
kXR_int32 seconds

kXR_char infomsg[dlen-4]

Where:

streamid

 binary identifier that is associated with this request stream corresponding

to a previous request.

dlen binary length of the data portion of the message (i.e., the subsequent

bytes).

seconds

 maximum binary number of seconds that the client needs to wait before

re-issuing the request.

infomsg

 human-readable message that describes the reason of why the wait is

necessary. The message does not end with a null (\0) byte. This message

may be displayed for informational purposes.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses

is undefined. The client should appropriately pair responses with requests

using the streamid value.

3) The client should wait the indicated number of seconds and retry the

request.

4) Nothing prohibits the client from waiting for less time than the indicated

number of seconds.

Protocol Server Responses

XRootD Protocol Version 4.0.0 Page: 36

2.4.10 kXR_waitresp Response Format

kXR_char streamid[2]
kXR_unt16 kXR_waitresp
kXR_int32 4
kXR_int32 seconds

Where:

streamid

 binary identifier that is associated with this request stream corresponding

to a previous request.

seconds

 estimated maximum binary number of seconds that the client needs to wait

for the response.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses

is undefined. The client should appropriately pair responses with requests

using the streamid value.

3) The client should wait the indicated number of seconds for the response.

The response should be returned via an unsolicited response (kXR_attn

with kXR_asynresp) at some later time which may be earlier than the time

indicated in seconds. When the response arrives, the client should use the

response data to complete the request that received the kXR_waitresp.

4) Nothing prohibits the client from waiting for different time than the

indicated number of seconds. Generally, if no response is received after at

least seconds have elapsed; the client should treat the condition as a fatal

error.

Server Responses Protocol

XRootD Protocol Version 4.0.0 Page: 37

2.5 Binary Definitions of Status, Error and Response Subcodes

2.5.1 Response Status Codes

Status Code Value

kXR_ok 0

kXR_oksofar 4000

kXR_attn 4001

kXR_authmore 4002

kXR_error 4003

kXR_redirect 4004

kXR_status 4007

kXR_wait 4005

kXR_waitresp 4006

2.5.2 kXR_attn Subcodes

kXR_attn Subcode Value

kXR_asyncms 5002

kXR_asynresp 5008

2.5.3 kXR_redirect Subcodes

kXR_redirect Subcode Value

kXR_recoverWrts 0x00001000

kXR_collapseRedir 0x00002000

2.5.4 kXR_status Subcodes and Other Values

kXR_status subcode in XrdProto:: Value

kXR_FinalResult 0x00

kXR_PartialResult 0x01

kXR_ProgressInfo 0x02

kXR_status value in XrdProto:: Value

kXR_statusBodyLen 16

Protocol Server Responses

XRootD Protocol Version 4.0.0 Page: 38

2.5.5 Error Codes

Error Value Corresponding POSIX errno Value

kXR_ArgInvalid 3000 EINVAL

kXR_ArgMissing 3001 EINVAL

kXR_ArgTooLong 3002 ENAMETOOLONG

kXR_FileLocked 3003 EDEADLK

kXR_FileNotOpen 3004 EBADF

kXR_FSError 3005 ENODEV

kXR_InvalidRequest 3006 EBADRQC

kXR_IOError 3007 EIO

kXR_NoMemory 3008 ENOMEM

kXR_NoSpace 3009 ENOSPC

kXR_NotAuthorized 3010 EACCES

kXR_NotFound 3011 ENOENT

kXR_ServerError 3012 EFAULT

kXR_Unsupported 3013 ENOTSUP

kXR_noserver 3014 EHOSTUNREACH

kXR_NotFile 3015 ENOTBLK

kXR_isDirectory 3016 EISDIR

kXR_Cancelled 3017 ECANCELED

kXR_ItExists 3018 EEXIST

kXR_ChkSumErr 3019 EDOM

kXR_inProgress 3020 EINPROGRESS

kXR_overQuota 3021 EDQUOT

kXR_SigVerErr 3022 EILSEQ

kXR_DecryptErr 3023 ERANGE

kXR_Overloaded 3024 EUSERS

kXR_fsReadOnly 3025 EROFS

kXR_BadPayload 3026 EINVAL

kXR_AttrNotFound 3027 ENOATTR

kXR_TLSRequired 3028 EPROTOTYPE

kXR_noReplicas 3029 EADDRNOTAVAIL

kXR_AuthFailed 3030 EAUTH (preferable) or EBADE

kXR_Impossible 3031 EIDRM

kXR_Conflict 3032 ENOTTY

kXR_TooManyErrs 3033 ETOOMANYREFS

kXR_ReqTimedOut 3034 ETIMEDOUT

 TLS

XRootD Protocol Version 4.0.0 Page: 39

3 Transport Layer Security (TLS) Support

The XRootD protocol supports TLS mode connections in two explcit ways:

1) client request using the kXR_protocol request, and

2) server request using the kXR_protocol response.

This mechanism provides several features:

 A single port can be used for TLS and non-TLS connections.

 The request channel can be split from the data channel using the

kXR_bind request so that control information flows on a TLS connection

while data flows on a non-TLS connection. Such an arrangement may

significantly improve performance.

 The number of interactions can be reduced when a connection needs to

use TLS.

 The server may independently enforce TLS requirements in for broad

categories:

o logins and all subsequent interactions,

o all post-login interactions,

o third party copy requests, and

o data transfers.

Currently, once a connection switches to TLS mode it cannot switch back. This is

not a protocol requirement but a practical side-effect of current TLS

implementations that buffer an inditerminant amount of data making it

problematic to deterministically switch modes. However, the XRootD protocol is

sufficiently open to allow such switches if and when the TLS protocol can do so

in the future.

A server is not required to support TLS. If it does, it should follow the protocol

specifications described in the kXR_protocol and kXR_bind requests.

TLS may be considered a replacement for request signing in most circumstances.

However, for certain workflows, request signing may offer better performance.

Be ware, that XRootD request signing, as defined, does not protect data while

TLS, when used for data, does so.

TLS

XRootD Protocol Version 4.0.0 Page: 40

3.1 Client-Server interactions to unilaterally use TLS

 The client should connect to the server using a non-TLS connection and

send the handshake packet.

 The client should then send a kXR_protocol request indicating that it

wants to use TLS. For reduced latency, the handshake and the

kXR_protocol request may be sent together.

 If the server supports TLS it should indicate in the kXR_protocol

response that the connection will be switched to use TLS after the

response is sent.

 The client should check if the server switched the connection to use TLS

and do the same if so indicated.

 All communications from then on use TLS.

3.2 Client-Server interactions to use TLS only when required

 The client should connect to the server using a non-TLS connection and

send the handshake packet.

 The client should then send a kXR_protocol request indicating that it is

able to use TLS. For reduced latency, the handshake and the

kXR_protocol request may be sent together. In the kXR_protocol request

the client should also indicate the expected next operation (i.e. login, data

transfer, or third party copy).

 If the server supports TLS it should indicate in the kXR_protocol

response that the connection has been switched to use TLS if the client’s

subsequent operation requires TLS. Note that it is also possible for the

server to indicate that TLS is required after the kXR_login request (i.e.

login does not require TLS).

 The client should check if the server switched the connection to use TLS

and do the same if so indicated. If the next reqest is a kXR_login and the

server indicated that TLS is not required until after the login, the client

should defer switching the connection to TLS until after the login and all

authentication interactions (i.e. kXR_auth requests).

 kXR_auth

XRootD Protocol Version 4.0.0 Page: 41

4 Server Request Format

4.1 kXR_auth Request

Purpose: Authenticate client’s username to the server.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_auth kXR_unt16 kXR_ok
kXR_char reserved[12] kXR_int32 0
kXR_char credtype[4]

kXR_int32 credlen
kXR_char cred[credlen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed akXR_int32 with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

credtype

 the first four characters of the protocol name. If the protocol name is less

than four characters, the name should be null terminated.

credlen

 binary length of the supplied credentials, cred.

cred credentials used to provide authentication information.

kXR_auth

XRootD Protocol Version 4.0.0 Page: 42

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Authentication credentials may be supplied by many means. The common

mechanism used by XRootD is to use the classes in the libXrdSec.so

library. See the “Authentication & Access Control Configuration

Reference” for more information.

3) Refer to the description of the security framework on how a client

authenticates to an XRootD server.

Binary Definitions

Request Modifiers Value Explanation

kXR_auth 3000 Perform authenication

 kXR_bind

XRootD Protocol Version 4.0.0 Page: 43

4.2 kXR_bind Request

Purpose: Bind a socket to a pre-existing session.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]

kXR_unt16 kXR_bind kXR_unt16 kXR_ok

kXR_char sessid[16] kXR_int32 1

kXR_int32 0 kXR_char pathid

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

sessid session identifier returned by a previous kXR_login request.

pathid socket identifier associated with this connection. The pathid may be used

in subqsequent kXR_read, kXR_readv, and kXR_write requests to

indicate which socket should be used for a response or as a source of data.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The sessid value should be treated as opaque data.

3) The socket issuing the kXR_bind request should neither have a session id

(i.e., be logged in) nor be already bound.

4) Once a socket is bound to a session, if may only supply data for

kXR_write requests or receive responses for kXR_read and kXR_readv

requests.

5) Each login session is limited to the number of bound sockets. Use the

kXR_Qconfig sub-request code of kXR_query to determine the maximum

number of sockets that can be bound to a login session.

6) Bound sockets are meant to support parallel data transfer requests across

wide-area networks. They are also meant to split control information from

data allowing control to flow on a TLS connection while data flows on a

non-TLS connection. See TLS Considerations for more information.

kXR_bind

XRootD Protocol Version 4.0.0 Page: 44

Binary Definitions

Request Modifiers Value Explanation

kXR_bind 3024 Bind additional sockets to session

4.2.1 TLS Considerations

A server may indicate in the response to the kXR_protocol request that all data

should flow across a TLS connection. The kXR_protocol request is normally sent

by the client immediately after the handshake. If the the server’s response

indicates that TLS should be used for data then the connection to be bound

should be set to TLS mode in order for the request to succeed. There are two

ways to achieve this.

The client may record whether or not the bound connections should use TLS. If

bound connections should use TLS the kXR_bind request should be prefixed by

a kXR_protocol request indicating that the connection should be switched to

TLS. To reduce latency, the kXR_protocol and kXR_bind requests should be

sent together. This method is preferred.

Alternatively, the client may always send a kXR_protocol request ahead of the

kXR_bind request indicating in the request that it is able to use TLS and the next

request will be kXR_bind. If the server requires the data to use TLS it should

respond that the connection will switch to using TLS after the kXR_protocol

response is sent. If the connection was switched to use TLS the client should do

the same and then send the kXR_bind request. Since this involves additional

interactions, it is not the preferred method.

The client is also free to switch the connection to use TLS whether or not the

server requires it to do so.

 kXR_chkpoint

XRootD Protocol Version 4.0.0 Page: 45

4.3 kXR_chkpoint Request

The kXR_chkpoint request allows a safe server-side modification of a file. When

a file is modified, the server logs file modifications so that in the event of a failure

the file can be restored to its original contents. The request consists of serveral

subcode operations to provide complete control of checkpointing. In all cases the

file being acted upon should be open in write mode.

The general sequence is:

 kXR_chkpoint with kXR_ckpBegin to establish a checkpoint.

 kXR_chkpoint with kXR_ckpXeq of a kXR_pgwrite , kXR_trunc,

kXR_write, and kXR_writev request.

o One ore more such operations may be executed.

 kXR_chkpoint with kXR_ckpCommit to commit the changes or

kXR_ckpRollback to rollback the changes.

Loss of connectivity or a file close before a commit should cause a rollback to

occur. Since the resiliency specifications of the XRootD protocol make it difficult,

if not impossible, for an application to detect when connectivity has been lost

and then re-established the kXR_ckpXeq subcode provides a safe way to execute

modifications within a checkpoint context. Should the starting context become

invalid, subsequent modifications should be rejected. This prevents a file from

being left in a corrupted state due to partial updates.

An implementation should guarantee, barring media failures, that files can be

successfully restored in any operational context (e.g. server failure). Should a

checkpoint rollback fail, the file should either be made read/only or made

inaccessible.

The total amount of data that may be recorded in a checkpoint should be limited.

The protocol specifies that the minimum data limit is kXR_ckpMinMax defined

as 10,485,760 (10MB). Implementations may allow for larger checkpoints. Note

that the limit applies to data exclusive of any overhead in order to provide

implementation consistency.

The following sections desctribe the various kXR_chkpoint subcodes in detail.

 kXR_chkpoint

XRootD Protocol Version 4.0.0 Page: 47

4.3.1 kXR_ckpBegin, kXR_ckpCommit, and kXR_ckpRollback Subcodes

Purpose: Create, delete or restore a checkpoint.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]

kXR_unt16 kXR_chkpoint kXR_unt16 kXR_ok

kXR_char fhandle[4] kXR_int32 0

kXR_char reserved[11]

kXR_char opcode
kXR_int32 0

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request that is to be used for the checkpoint request. The file

should be opened in write mode.

opcode checkpoint operation wanted:

 kXR_ckpBegin - Create a checkpoint.

 kXR_ckpCommit - Delete an existing checkpoint to commit changes.

 kXR_ckpRollback - Restore file data and delete the checkpoint.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

3) The fhandle should refere to a file opened for writing. If it does not, the

request should fail.

4) The file should be opened in update mode without the POSC option.

Creation of a checkpoint should fail if this is not the case.

5) Once a checkpoint is establish a new one should not be allowed until the

existing checkpoint is committed or rolled back.

kXR_chkpoint

XRootD Protocol Version 4.0.0 Page: 48

6) Should the client loose connectivity to the server, all outstanding

checkpoints should be restored.

7) Should the client close a file with an outstanding checkpoint, the

checkpoint should be restored.

8) Upon server restart, all outstanding checkpoints should be restored.

Binary Definitions

Request Modifiers Value Explanation

kXR_chkpoint 3012 Checkpoint file data.

 opcode

 kXR_ckpBegin 0x00 Create a new checkpoint.

 kXR_ckpCommit 0x01 Delete the current checkpoint.

 kXR_ckpRollback 0x03 Restore the current checkpoint.

 kXR_chkpoint

XRootD Protocol Version 4.0.0 Page: 49

4.3.2 kXR_ckpQuery Subcode

Purpose: Create and execute a checkpointed operation on an open file.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]

kXR_unt16 kXR_chkpoint kXR_unt16 kXR_ok

kXR_char fhandle[4] kXR_int32 8

kXR_char reserved[11] kXR_int32 limit

kXR_char kXR_ckpQuery kXR_int32 used

kXR_int32 0

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request that is to be used for the checkpoint request. The file

should be opened for write mode.

limit the maximum number of data bytes that may be recorded in a checkpoint.

used the number of data bytes already recorded in the checkpoint.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

3) The fhandle should refere to a file opened for writing. If it does not, the

request should fail.

4) When the client closes a file with an outstanding checkpoint, the

checkpoint should be deleted.

kXR_chkpoint

XRootD Protocol Version 4.0.0 Page: 50

Binary Definitions

Request Modifiers Value Explanation

kXR_chkpoint 3012 Checkpoint file data.

 opcode

 kXR_ckpQuery 0x02 Query checkpoint limit and

usage.

 kXR_chkpoint

XRootD Protocol Version 4.0.0 Page: 51

4.3.3 kXR_ckpXeq Subcode

Purpose: Modify a file within a checkpoint context.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]

kXR_unt16 kXR_chkpoint kXR_unt16 kXR_ok

kXR_char reserved[15] kXR_int32 0

kXR_char kXR_ckpXeq

kXR_int32 24
 request

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request that is to be used for the checkpoint request. The file

should be opened in write mode.

request

 a fully formed fhandle oriented kXR_pgwrite, kXR_truncate, kXR_write,

or kXR_writev request.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) A checkpoint size is limited. The kXR_ckpQuery subcode may be used to

determine the limit.

3) The streamid in request should match the streamid in the kXR_chkpoint

request. An error should result if that is not the case.

4) The protocol does not specify fileset checkpoints (i.e. a checkpoint for a

related group of files). Consequently, if request is a kXR_writev the file

handles in each date segment should refer to the same file (i.e. have

identical file handles). An error should result if this is not the case.

kXR_chkpoint

XRootD Protocol Version 4.0.0 Page: 52

5) Should an error occur during a kXR_ckpXeq, the implementation is free

to close the client connection to discard any outstanding data. In such an

event, a kXR_ckpRollback should be implicitly performed. If data is

drained and the connection left open, the checkpoint should be left intact,

allowing the client to delete or restore the checkpoint.

Binary Definitions

Request Modifiers Value Explanation

kXR_chkpoint 3012 Checkpoint file data.

 opcode

 kXR_ckpXeq 0x04 Execute a request within a

checkpoint context.

 kXR_chmod

XRootD Protocol Version 4.0.0 Page: 53

4.4 kXR_chmod Request

Purpose: Change the access mode on a directory or a file.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_chmod kXR_unt16 kXR_ok
kXR_char reserved[14] kXR_int32 0
kXR_int16 mode

kXR_int32 plen

kXR_char path[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

mode access mode to be set for path. The access mode is an “or’d” combination

of the following values:

Access Readable Writeable Executable
Owner kXR_ur kXR_uw not supported
Group kXR_gr kXR_gw not supported
Other kXR_or not supported not supported

plen binary length of the supplied path, path.

path path whose mode is to be set. It may be suffixed with CGI information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) No umask is applied to the specified mode.

kXR_chmod

XRootD Protocol Version 4.0.0 Page: 54

 Binary Definitions

Request Modifiers Value Explanation

kXR_chmod 3002 Change directory or file permissions

 mode

 kXR_ur 0x01 00 Owner readable

 kXR_uw 0x00 80 Owner writable

 kXR_ux 0x00 40 Owner searchable (directories)

 kXR_gr 0x00 20 Group readable

 kXR_gw 0x00 10 Group writable

 kXR_gx 0x00 08 Group searchable (directories)

 kXR_or 0x00 04 Other readable

 kXR_ow 0x00 02 Other writable

 kXR_ox 0x00 01 Other searchable (directories)

 kXR_close

XRootD Protocol Version 4.0.0 Page: 55

4.5 kXR_close Request

Purpose: Close a previously opened file, communications path, or path group.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_close kXR_unt16 kXR_ok
kXR_char fhandle[4] kXR_int32 0
kXR_char reserved[12]

kXR_int32 0

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

Binary Definitions

Request Modifiers Value Explanation

kXR_close 3003 Close an open file

 kXR_dirlist

XRootD Protocol Version 4.0.0 Page: 57

4.6 kXR_dirlist Request

Purpose: Enumerate the contents of a directory.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_dirlist kXR_unt16 kXR_ok
kXR_char reserved[15] kXR_int32 dlen
kXR_char options kXR_char Dirname0\n

kXR_int32 plen •

kXR_char path[plen] •

kXR_char

kXR_char

•

dirnamen

0

Normal Response w/ kXR_dcksm Normal Response w/ kXR_dstat
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_ok kXR_unt16 kXR_ok
kXR_int32 dlen kXR_int32 dlen
kXR_char “.\n” kXR_char “.\n”

kXR_char “0 0 0 0\n” kXR_char “0 0 0 0\n”

kXR_char dirname0\n kXR_char dirname0\n

kXR_char statinfo0 kXR_char statinfo0\n

kXR_char [ctype:csval]0\n •

 • •

 • •

kXR_char

kXR_char

•
dirnamen\n

statinfon

kXR_char

kXR_char

kXR_char

dirnamen\n

statinfon

0

kXR_char [ctype:csval]n

kXR_char 0

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

options

 optionally, one or more of the following:

 kXR_dstat - return stat information with each entry (protocol version 3+).

 kXR_dcksm - return stat information and checksum with each entry

 (protocol version 4+).

kXR_dirlist

XRootD Protocol Version 4.0.0 Page: 58

reserved

 area reserved for future use and should be initialized to null characters

(i.e. ‘\0’).

plen binary length of the supplied path, path.

path path of a directory whose entries are to be listed. It may be suffixed with

CGI information.

dlen binary length of the data that follows dlen.

dirname

 entry in the directory whose listing was requested.

statinfo

 the kXR_stat information for the preceeding dirname. Refer to kXR_stat

for details. The statinfo is only returned when kXR_dcksm or kXR_dstat is

set and the server implements the protocol version indicated in options.

ctype the name of the checksum algorithm.

csval the checksum value as a hexadecimal ASCII text string.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) A directory may have multiple entries and the response contains all of the

entries.

3) Each directory entry should be suffixed by a new-line character; except for

the last entry which should be suffixed by a null character. When

kXR_dstat is specified, the last entry is the couplet “dirname\nstatinfo”.

4) When kXR_dcksm is specified, kXR_dstat should be assumed and the

checksum information as “[ctype:csval]” (e.g. “[adler32:d395bc71]”)

appended to the corresponding statinfo separated by a single space. If

there is no checksum value associated with the entry the csval should be

set to the word none (e.g. “[adler32:none]”).

5) If a file has more than one checksum associated with it and the request

does not specify which checksum should be returned, then the default

checksum should be retruned.

 kXR_dirlist

XRootD Protocol Version 4.0.0 Page: 59

6) Similar to kXR_query with the kXR_Qcksum subcode, the directory path

may contain the cks.ctype CGI element specifying the particular

checksum that should be returned. Refer to kXR_Qcksum for details.

7) Since more entries may exist than is possible to send at one time, the

kXR_oksofar protocol may be used to segment the response. Under no

circumstances should a directory name be split across a response packet.

8) The server should not return the entries “.” and “..” except when

kXR_dstat is specified, in which case only the “.” entry is returned.

9) An empty directory should return the eight-byte triplet {streamid, 0, 0}

unless kXR_dstat is specified; in which case “{streamid,0,8}.\n0 0 0\0”

should be returned.

10) Clients should always check if the server supports kXR_dstat. If the

option is supported, the first entry should be a dot entry followed the zero

stat information.

Binary Definitions

Request Modifiers Value Explanation

kXR_dirlist 3004 List a directory

 options

 kXR_dcksm 0x04 Return checksum with entry

 kXR_dstat 0x02 Return stat information with entry

 kXR_online 0x01 Only list online entries

 kXR_endsess

XRootD Protocol Version 4.0.0 Page: 60

4.7 kXR_endsess Request

Purpose: Terminate a pre-existing session.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_endsess kXR_unt16 kXR_ok
kXR_char reserved[16] kXR_int32 0
kXR_int32 0

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

sessid

 session identifier returned by a previous kXR_login request.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The sessid value should be treated as opaque data.

3) The socket issuing the kXR_endsess request should be logged in and,

optionally, authenticated.

4) If the sessid is all binary zeroes, the current session is terminated.

5) The server verifies that the process presenting the sessid actually received

it on a previous kXR_login.

Binary Definitions

Request Modifiers Value Explanation

kXR_endsess 3023 End previous session

 kXR_fattr

XRootD Protocol Version 4.0.0 Page: 61

4.8 kXR_fattr Request

The kXR_fattr request code is used to delete, list, retrieve, and set file attributes

(also known as extended attributes). This is accomplished using request

subcodes. File attributes are specific to the file system being exported by the

server. The exported file system has its own specific limits on the length of

attribute names and the amount of data that may associated with a name. Some

even limit the total amount of attribute data that may be associated with a file.

Finally, not all file systems support extended attributes. The kXR_query request

using the kXR_QConfig subcode with the xattr argument may be used to

ascertain limits for any particular server.

The kXR_fattr request imposes its own limits on the maximum length of an

attribute name (i.e. kXR_faMaxNlen, currently 248 bytes) and attributes value

(i.e. kXR_faMaxVlen, currently 65536 bytes or 64K). Be aware that smaller limits

may apply, depending on the underlying file system.

The kXR_fattr request supports deleting, retrieving, and setting multiple

attributes with one request. However, the operation should not be considered

atomic when multiple attributes are specified. A maximum kXR_faMaxVars

(currently 16) attribute vales may be deleted, set, or retrieved per request.

For delete and retrieve requests, only attribute names are specified. For set

requests, the attribute names are followed by the corresponding values (i.e. in 1-

to-correspondence to the names) to be used for each attribute. Regardless of the

subcode, the first string in each request is the path name of the file to which the

request applies; which may be a null string.

Binary Definitions

Request Modifiers Value Explanation

kXR_fattr 3020 Perform file attribute function

 kXR_fattrDel 0 Delete one or more attributes

 kXR_fattrGet 1 Get one or more attributes

 kXR_fattrList 2 List file attribute names

 kXR_fattrSet 3 Set one or more attributes

 isNew 0x01 Attribute must not exist

 aData 0x10 Include attribute value

kXR_fattr

XRootD Protocol Version 4.0.0 Page: 62

4.8.1 Layout of namevec

Subsequent sections refer to namevec which is a vector whose elements are laid

out as follows:

kXR_unt16 rc
kXR_char name[]
kXR_char 0

Where:

rc as an argument is should be set to zero. In the response, it holds the status

code associated with the attribute name. A status code not equal to

kXR_ok indicates that the requested operation with respect to the attribute

name was not completed.

name name of an attribute. The length of each name, excluding the null byte,

should not be greater than kXR_faMaxNlen. Notice that the name is

followed by a null byte. Attribute names are null terminated strings.

These elements are concatenated together to produce a vector of names.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values.

2) There is no alignment requirement in the for the namevec element. That is,

namevec elements should be streamed together irrespective of byte

boundaries.

3) A namevec element should not be split across kXR_oksofar responses.

 kXR_fattr

XRootD Protocol Version 4.0.0 Page: 63

4.8.2 Layout of valuvec

Subsequent sections refer to valuvec which is a vector whose elements are laid out

as follows:

kXR_int32 vlen
kXR_char value[vlen]

Where:

vlen length of the subsequent value.

value value that the attribute is to have when issuing a kXR_fattrSet

request or the actual value of the attribute when issuing a kXR_fattrGet

request.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values.

2) There is no alignment requirement in the for the valuvec element. That is,

valuvec elements should be streamed together irrespective of byte

boundaries.

3) A valuvec element should not be split across kXR_oksofar responses.

 kXR_fattr - del

XRootD Protocol Version 4.0.0 Page: 65

4.8.3 kXR_fattr Request – Delete Subcode

Purpose: Delete one or more file attributes.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_fattr kXR_unt16 kXR_ok
kXR_char fhandle[4] kXR_int32 rlen
kXR_char kXR_fattrDel kXR_char nerrs

kXR_char nattr kXR_char nattr

kXR_char options kXR_char namevec[nattr]

kXR_char reserved[9]

kXR_int32 alen

kXR_char path

kXR_char namevec[nattr]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request that is to be used for the request when no path is

supplied (i.e, path is a null string). If a path is supplied, fhandle should be

ignored.

nattr number of attribute names that follow. The value should be one or greater

but no more than kXR_faMaxVars.

options

 reserved for future options.

alen binary length of the arguments that follow the request header.

path null terminated path. The path may be suffixed with CGI information. If

path is a null string (i.e. only contains a null byte) then fhandle should be

used to identify the file to which this request applies.

kXR_fattr - del

XRootD Protocol Version 4.0.0 Page: 66

namevec

 a vector of null terminated attribute names. Each name in the vector is

preceeded by two bytes of zero. The number of such names concatenated

together should equal nattr. The length of each name, excluding the null

byte, should not be greater than kXR_faMaxNlen. The namevec layout is

described here.

rlen binary length of the response that follow the request header.

nerrs number of variables in namevec that could not be deleted. The two byte

field preceeding the name contains a status code (i.e. rc in namevec). When

it contains kXR_OK then variable was deleted. Otherwise, it should be the

error code describing the error encountered when deleting the variable.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

3) The server should process the elements in the order specified.

4) There are no alignment requirements in the argument or respronse

portions of the request.

5) Deletion of extended attributes should be restricted to clients with write

access to the target file.

 kXR_fattr - get

XRootD Protocol Version 4.0.0 Page: 67

4.8.4 kXR_fattr Request – Get Subcode

Purpose: Retrieve one or more file attributes.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_fattr kXR_unt16 kXR_ok
kXR_char fhandle[4] kXR_int32 rlen
kXR_char kXR_fattrGet kXR_char nerrs

kXR_char nattr kXR_char nattr

kXR_char options kXR_char namevec[nattr]

kXR_char reserved[9] kXR_char valuvec[nattr]

kXR_int32 alen

kXR_char path

kXR_char namevec[nattr]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request that is to be used for the request when no path is

supplied (i.e, path is a null styring). If a path is supplied, fhandle should be

ignored.

nattr number attribute names that follow. The value should be one or greater

but no more than kXR_faMaxVars.

options

 reserved for future options.

alen binary length of the arguments that follow the request header.

path null terminated path. The path may be suffixed with CGI information. If

path is a null string (i.e. only contains a null byte) then fhandle should be

used to identify the file to which this request applies.

kXR_fattr - get

XRootD Protocol Version 4.0.0 Page: 68

namevec

 is a vector of null terminated attribute names. Each name in the vector is

preceeded by two bytes of zero. The number of such names concatenated

together should equal nattr. The length of each name, excluding the null

byte, should not be greater than kXR_faMaxNlen.

 The namevec is echoed in the response. The two byte header in each name

is replaced by the status code associated with retreiving the value (i.e. rc in

namevec). The namevec layout is described here.

rlen binary length of the response that follows the request header.

nerrs number of variables in namevec that could not be retrieved. The two byte

field preceeding the name contains a status code (i.e. rc in namevec). When

it contains kXR_ok then variable’s value was retrieved. Otherwise, it is the

error code describing the error encountered when retrieving the variable.

valuvec

 value corresponding to the specified attribute name. Values are returned

in name specified order (i.e. there should be a 1-to-1 correspondene

between namevec and valuvec). For attribute names that indicate an error

the length for the corresponding value should be set to zero. If the

attribute, in fact, has no associated value (i.e. it exists but the data is null)

then the status code associated with the attribute name should be set to

kXR_ok. The valuvec layout is described here.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

3) The server should process the elements in the order specified.

4) Only those variables that can be set via kXR_fattr should be returned.

5) There are no alignment requirements in the argument or respronse

portions of the request.

6) Retreival of extended attributes should be restricted to clients with read

access to the target file.

 kXR_fattr - list

XRootD Protocol Version 4.0.0 Page: 69

4.8.5 kXR_fattr Request – List Subcode

Purpose: List file attribute names.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_fattr kXR_unt16 statok
kXR_char fhandle[4] kXR_int32 rlen
kXR_char kXR_fattrList kXR_char names[rlen]

kXR_char reserved

kXR_char options Response with ::adata set
kXR_char reserved[9] kXR_char streamid[2]
kXR_int32 alen kXR_unt16 statok
kXR_char path kXR_int32 rlen
 kXR_char {name

 kXR_int32 vlen

 kXR_char value[vlen]

 }[]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request that is to be used for the request when no path is

supplied (i.e, path is a null string). If a path is supplied, fhandle should be

ignored.

options

 ClientFattrRequest::adata include the attribute value in the response.

alen binary length of the arguments that follow the request header.

path null terminated path. The path may be suffixed with CGI information. If

path is a null string (i.e. only contains a null byte) then fhandle should be

used to identify the file to which this request applies. This is should also

be the case when alen is zero.

kXR_fattr - list

XRootD Protocol Version 4.0.0 Page: 70

statok is one of two status codes:

 kXR_ok

 indicates successful completion as a final response.

 kXR_oksofar

 indicates that a subsequent response should follow with more data. In

either case, the response header is followed by one or more null

terminated attribute names. Attribute names and optional subsequest

values should not be split across response segements.

rlen binary length of the of the response data that follows.

names if rlen is not zero, then one or more null terminated attribute names

forming a list of names (e.g. name\0[name\0[…]]).

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

3) An attribute name should never be split across multiple responses

4) Only settable variables via kXR_fattr should be returned.

5) When ClientFattrRequest::adata is specified, attribute names whose value

cannot be retrieved should not be returned.

6) There are no alignment requirements in the argument or respronse

portions of the request.

7) Listing of extended attributes should be restricted to clients with read

access to the target file.

 kXR_fattr - set

XRootD Protocol Version 4.0.0 Page: 71

4.8.6 kXR_fattr Request – Set Subcode

Purpose: Set one or more file attributes.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_fattr kXR_unt16 kXR_ok
kXR_char fhandle[4] kXR_int32 rlen
kXR_char kXR_fattrList kXR_char nerrs

kXR_char nattr kXR_char nattr

kXR_char options kXR_char namevec[nattr]

kXR_char reserved[9]

kXR_int32 alen

kXR_char path

kXR_char namevec[nattr]

kXR_char valuvec[nattr]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request that is to be used for the request when no path is

supplied (i.e, path is a null string). If a path is supplied, fhandle should be

ignored.

nattr number attribute name-value pairs that follow. The value should be one

or greater but no more than kXR_faMaxVars.

options

 is one of the following options:

 isNew - the variable should only be set if it does not exist.

alen binary length of the arguments that follow the request header.

path null terminated path. The path may be suffixed with CGI information. If

path is a null string (i.e. only contains a null byte) then fhandle should be

used to identify the file to which this request applies.

kXR_fattr - set

XRootD Protocol Version 4.0.0 Page: 72

namevec

 is a vector of null terminated attribute names. Each name in the vector is

preceeded by two bytes of zero. The number of such names concatenated

together should equal nattr. The length of each name, excluding the null

byte, should not be greater than kXR_faMaxNlen.

 The namevec is echoed in the response. The two byte header in each name

is replaced by the status code associated with setting the value (i.e. rc in

namevec). The namevec layout is described here.

valuvec

 is a vector of attribute values. Each value starts with a four byte length

which may be zero to set an attribute without a corresponding value . The

length should not be greater than kXR_faMaxVlen. The valuvec layout is

described here.

nerrs number of variables in namevec that could not be set. The two byte field, rc,

preceeding the name contains a status code. When it contains kXR_ok

then variable’s value was set. Otherwise, it should be the error code

describing the error encountered when setting the variable.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

3) The server should process the elements in the order specified.

4) Attributes set via kXR_fattr should be placed in a separate internal

namespace to avoid conflicts with other extended attributes.

5) There are no alignment requirements in the argument or respronse

portions of the request.

6) Setting of extended attributes should be restricted to clients with write

access to the target file.

 kXR_gpfile

XRootD Protocol Version 4.0.0 Page: 73

4.9 kXR_gpfile Request

Purpose: Direct a server to get or put a complete file.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_gpfile kXR_unt16 kXR_waitresp
kXR_unt16 options kXR_int32 4

kXR_char sources kXR_int32 seconds

kXR_char streams Async Attn Status Update Response

kXR_char reserved[10] kXR_char pad[2]

kXR_unt16 srclen kXR_unt16 kXR_attn

kXR_int32 totlen kXR_int32 18

kXR_char [cstype:csval\s]# kXR_unt32 kXR_asyncinfo

kXR_char src[srclen] kXR_char streamid[2]

kXR_char \s kXR_unt16 kXR_gpfile

kXR_char dst[] kXR_int64 xfrbytes

 kXR_char pctdone

 kXR_char status

#Should only be present when kXR_gpfcsver is specified in options.

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

options

 request options:

 kXR_gpfcsver - verify that specified checksum matches.

 kXR_gpfdlgid - use identity delegation for the retrieval otherwise

 token based authorization should be assumed.

 kXR_gpfforce - remove any existing file with the same name prior to the

 retrieval.

 kXR_gpfkeep - do not remove any partial file upon failure.

 kXR_gpfhush - do not send status updates.

 kXR_gpfPut - this is a request to put a file; otherwise, get the file.

 kXR_gpftls - transfer the data using TLS.

kXR_gpfile

XRootD Protocol Version 4.0.0 Page: 74

sources

the binary number of the maximum number of sources to use for the copy.

A value of zero should use the default number of sources.

streams

the number of parallel streams to use for the retrieval specified in binary.

A value of zero should use the default number of streams.

srclen binary length of the source URL argument, src.

totlen binary length of the arguments that follow.

cstype:csval

 Specified the the checksum of cstype (e.g. adler32, crc32, md5, etc) and the

corresponding value, csval that the file should have at the destination. The

cstype should be a supported checksum algorithm and csval should be

specified as an ASCII text hex string without the leading ‘0x’. A single

space character should follow csval. A valid csval consists of an even

number of characters whose length divided by two equals the algorithm’s

result in binary. The retrival should fail if the checksum of the transferred

file does not equal the specified value.

src URL of the source file along with any CGI information releant to the

source’s location.

dst URL of the destination file along with any CGI information relevant to the

destination’s location. The URL should idenify the name (i.e. path), that

the file is to have at the destination server (i.e. the server to which the

request is directed). The path may include CGI information to modify file

creation. Elements that can be specified in the kXR_open request may be

specified in the CGI. See the notes on possible restrictions.

xfrbytes

 the binary number of bytes that have been processed so far reported via

an asynchronous kXR_attn plus kXR_asyninfo response.

pctdone

 the binary number indicating the percentage, 0 to 100, of the of operation

that has been completed reported via an asynchronous kXR_attn plus

kXR_asyninfo response.

 kXR_gpfile

XRootD Protocol Version 4.0.0 Page: 75

status the status of the retrieval request as one of:

 kXR_gpfpend - not started

 kXR_gpfxfr - transferring data

 kXR_gpfver - performing checksum verification

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Support for kXR_gpfile may be determined from the kXR_protocol

response.

3) It is up to the implementation whether or not a third party transfer is

cancelled when network connectivity is lost to the client. Minimally, the

desired action is for pending requests be removed from the transfer

queue.

4) It is up to the implementation whether or not protocols beyond file, xroot

and xroots are supported for the retrieval or sending of src. Ostensibly, the

protocol specification allows the client to specify an arbitrary protocol to

be used (e.g. http, s3, etc) in the src and dst URLs. Should a specified

protocol not be supported the request should fail.

5) The kXR_gpfile request is primarily geared for token based authorization

retrieval. However, it does allow delegated identity retrieval. An

implementation should support token based authorization if it supports

kXR_gpfile. Delegated identity retrieval is an optional extension.

However, an error should be reported if the kXR_gpfdlgid option is set

but not supported.

6) An implementation should assure that if a transfer fails for any reason

whatsoever, the destination file is removed.

7) The kXR_gpfkeep is meant for debugging pruposes to allow failing

transfer to be better diagnosed.

8) The client should handle a kXR_auhmore response to the the kXR_gpfile

request. This may occur if the server needs to obtain delegated credentials

to continue the request (e.g. kXR_gpfdlgid was specified). This is

independent of any previous kXR_authmore response that the client may

have handled (e.g. during a kXR_login request).

9) The general response to a successful kXR_gpfile request should be

kXR_waitresp. This allows the retrieval to occur asynchronously to client

execution with possible asynchronous status updates. When the request

completes the client should receive a final response indicating success or

failure.

kXR_gpfile

XRootD Protocol Version 4.0.0 Page: 76

10) Status updates should be handled by an asynchronous kXR_attn plus

kXR_asyninfo response. The frequency is implementation dependent but

typically should be spaced between 3 to 5 seconds.

11) The final response should be provided via an asynchronous kXR_attn

plus kXR_asynresp response.

 Binary Definitions

Request Modifiers Value Explanation

kXR_gpfile 3005 n/a

 options

 kXR_gpfcsver 0x0001 Check supplied ofr verification.

 kXR_gpfdlgid 0x0002 Use delegated identity.

 kXR_gpfforce 0x0004 Remove file at destination first.

 kXR_gpfkeep 0x0008 Keep file upon failure.

 kXR_gpfhush 0x0010 Do not send status updates.

 kXR_gpfPut 0x0020 Send the file to the destination.

 kXR_gpftls 0x0040 Send the data using TLS.

 status

 kXR_gpfpend 0x00 Request is pending.

 kXR_gpfxfr 0x01 Request is transferring data.

 kXR_gpfver 0x02 Request is verifying the checksum.

 kXR_locate

XRootD Protocol Version 4.0.0 Page: 77

4.10 kXR_locate Request

Purpose: Locate a file.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_locate kXR_unt16 kXR_ok
kXR_int16 options kXR_int32 rlen
kXR_char reserved[14] kXR_char info[rlen]

kXR_int32 plen

kXR_char path[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

options

 options to apply when path is opened. The options are an “or’d”

combination of the following values:

 kXR_nowait - provide information as soon as possible

 kXR_prefname - hostname response is prefered

 kXR_refresh - update cached information on the file’s location

 (see notes)

.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

plen binary length of the supplied path, path.

path path of the file to be located. CGI information appended to the path does

not affect the request. Path may also start with an asterisk or be only an

asterisk with the following meaning:

* - return all connected managers and servers

 *path - return all managers and servers exporting path

rlen byte length of the response that follows

kXR_locate

XRootD Protocol Version 4.0.0 Page: 78

info zero or more node types, IPV6 hybrid addresses, and port numbers of

nodes that have the file. The port number is to be used to contact the node.

Node Entry Response Format

xy[::aaa.bbb.ccc.ddd.eee]:ppppp

xyhostname:ppppp

Where:

x is a single character that identifies the type of node whose IP address

follows. Valid characters are:

 M - Manager node where the file is online

 m - Manager node where the file is pending to be online.

 S - Server node where the file is online

 s - Server node where the file is pending to be online.

y is a single character that identifies the file access mode at the node whose

IP address follows. Valid characters are:

 r - Read access allowed

 w - Read and write access allowed.

aaa.bbb.ccc.ddd.eee

 IPv4 portion of the IPV6 node address, for IPV4 environments. Otherwise,

a true IPV6 address is returned.

hostname

 hostname for the node address. This format may only be returned when

kXR_prefname is specified, but does not forbid an address reply.

ppppp port number to be used for contacting the node.

 kXR_locate

XRootD Protocol Version 4.0.0 Page: 79

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Option flags are the same as those defined for the kXR_open request.

3) The kXR_refresh voids the kXR_nowait option.

4) If the file resides in more than one location, each location is separated by a

space.

5) The kXR_nowait option provides a location as soon as one becomes

known. This means that not all locations are necessarily returned. If the

file does not exist, a wait is still imposed.

6) If available, use the inet_ntop() and inet_pton() function to convert

addresses to suitable format as these accepts traditional IPV4 address as

well as IPV6 addresses.

7) Nodes identified as M or m, do not actually hold the file. These are

manager nodes that know other locations for the file. To obtain the real

file location, the client should contact each M(m) node and issue a

kXR_locate request. The processes is iterative, as the response from an

M(m) node may identified other M(m) nodes.

8) Clients should guard against circular references by setting an absolute

depth limit in the number of M(m) to M(m) references they will accept

before declaring an error. A limit of 4 covers a range of 16,777,216 possible

locations.

Binary Definitions

Request Modifiers Value Explanation

kXR_locate 3027 Perform location operation

 options

 kXR_compress 0x00 01 Return unique hosts

 kXR_nowait 0x20 00 Return immediate information

 kXR_prefname 0x01 00 Preferentially return DNS names

 kXR_refresh 0x00 80 Refresh cached information

 kXR_login

XRootD Protocol Version 4.0.0 Page: 81

4.11 kXR_login Request

Purpose: Initialize a server connection.

Request Normal Response
 server < 2.4.0 | client < 1.0

kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_login kXR_unt16 kXR_ok
kXR_int32 pid kXR_int32 slen
kXR_char username[8] kXR_char sec[slen]

kXR_char reserved server >= 2.4.0 & client >= 1.0

kXR_char ability kXR_char streamid[2]

kXR_char capver kXR_unt16 kXR_ok

kXR_char reserved kXR_int32 slen+16

kXR_int32 tlen kXR_char sessid[16]

kXR_char token[tlen] kXR_char sec[slen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

pid process number associated with this connection.

username

 unauthenticated name of the user to be associated with the connection on

which the login is sent.

kXR_login

XRootD Protocol Version 4.0.0 Page: 82

ability client’s extended capabilities represented as bit flags, as follows:

0b00000001 the client accepts full standard URL’s in a redirection

response. Unless the following ability is set, the protocol in

the URL should remain xroot. This bit is also identified as

kXR_fullurl.

0b00000011 the client accepts protocol changes in a full standard URL’s

in a redirection response. Unless the this ability is set, the

protocol in the URL should remain xroot. This bit is also

identified as kXR_multipr.

0b00000100 the client accepts protocol redirects during a kXR_read and

kXR_readv requests.This bit is also identified as

kXR_readrdok.

0b00001000 the client is dual-stacked and supports IPv4 and IPv4

connections.This bit is also identified as kXR_hasipv64.

0b00010000 the client only supports IPv4 connections.This bit is also

identified as kXR_onlyprv4.

0b00100000 the client only supports IPv6 connections.This bit is also

identified as kXR_onlyprv6.

0b01000000 the client only supports local file access.This bit is also

identified as kXR_lclfile.

0b10000000 the client supports redirect flags in the kXR_redirect

response.This bit is also identified as kXR_redirflags.

capver

 client’s capabilities combined with the binary protocol version number of

the client. The capabilities reside in the top-most two bits while the

protocol version number is encoded in the lower 6 bits. Currently, for

capabilities two values are possible:

 0b00vvvvvv - client only supports synchronous responses

 0b10vvvvvv - (kXR_asyncap) client supports asynchronous responses

tlen binary length of the supplied token, token. If no token is present, tlen is

zero.

token token supplied by the previous redirection response that has initiated this

login request plus other optional elements.

slen binary length of the information, sec, that follows slen.

 kXR_login

XRootD Protocol Version 4.0.0 Page: 83

sessid opaque session identifier associated with this login. The sessid is always

present when the server protocol version if greater than or equal to 2.4.0

and the client protocol version if greater than 0.

sec null-terminated security information. The information should be treated

as opaque and is meant to be used as input to the security protocol

creation routine XrdSecGetProtocol().

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) If no security information is returned (i.e., slen is zero), the XRootD server

does not require that the client authenticate.

3) If security information is returned, then the client should create the

security context allowed by the security information, obtain credentials,

and send them using the kXR_auth request.

4) Authentication should occur prior to any operation that requires

authentication. See the table on page 13 for a list of requests that should be

authenticated.

5) A subsequent kXR_auth request may revert the login into a normal user

login should XRootD find that the authenticated user cannot assume the

role of administrator.

6) Sending a kXR_login request on a previously authenticated connection

destroys the authentication context; requiring that the connection be re-

authenticated.

7) The sessid is used in kXR_bind and kXR_endsess requests.

8) When the client indicates kXR_lclfile along with kXR_fullurl then the

client should accept redirects to a local file the via file:// protocol indicator.

9) The kXR_redirflags should be only used in conjunction with the

kXR_redirect server response.

10) Opaque information should be treated as truly opaque. The client should

not inspect nor modify opaque information in any way.

kXR_login

XRootD Protocol Version 4.0.0 Page: 84

Binary Definitions

Request Modifiers Value Explanation
kXR_login 3007 Perform server login

 ability

 kXR_fullurl 0x01 Accepts full URL redirect

 kXR_hasipv64 0x08 IPv4 and IPv6 capable

 kXR_multipr 0x03 Accepts non-root protocol redirects

 kXR_nothing 0x00 No special abilities

 kXR_onlyprv4 0x10 Only accepts private IPv4 addresses

 kXR_onlyprv6 0x20 Only accepts private IPv6 addresses

 kXR_lclfile 0x40 Supports local file access.

 kXR_redirflags 0x80 Supports kXR_redirect flags.

 capver

 kXR_asyncap 0x80 Supports asynchronous responses

 kXR_vermask 0x3f Mask to isolate kXR_vernnn

 kXR_ver000 0x00 Predates 2005 protocol

 kXR_ver001 0x01 Implements original 2005 protocol

 kXR_ver002 0x02 Implements above + async responses

 kXR_ver003 0x03 Implements above + 2011 extensions

 kXR_ver004 0x04 Implements above + request signing

 kXR_ver005 0x05 Implements above + TLS

4.11.1 Additional Login CGI Tokens

The following table lists additional CGI tokens that may be passed to further

identify the client. They are passed in the token argument.

Token Token Value
xrd.cc the two character country code of the client’s location
xrd.if the client’s interface speed in gigabits gggg[.mm]
xrd.ll the comma separated latitude and longtitude of the client in degree

[-]DDD[.dddddd] format
xrd.tz signed timezone relative to UDT of client’s location

 kXR_mkdir

XRootD Protocol Version 4.0.0 Page: 85

4.12 kXR_mkdir Request

Purpose: Create a directory.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_mkdir kXR_unt16 kXR_ok
kXR_char options kXR_int32 0
kXR_char reserved[13]

kXR_unt16 mode

kXR_int32 plen

kXR_char path[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

options

 options to apply when path is created. The options are an “or’d”

combination of the following values:

 kXR_mkdirpath - create directory path if it does not already exist

mode access mode to be set for path. The access mode is an “or’d” combination

of the following values:

Access Readable Writeable Searchable
Owner kXR_ur kXR_uw kXR_ux

Group kXR_gr kXR_gw kXR_gx

Other kXR_or not supported kXR_ox

kXR_mkdir

XRootD Protocol Version 4.0.0 Page: 86

plen binary length of the supplied path, path.

path path of the of the directory to be created. The path may be suffixed with

CGI information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) When a directory path is created, as requested by the kXR_mkdirpath

option, the directory permission specified in mode are propagated along

the newly created path.

3) No umask applies to the specified mode.

Binary Definitions

Request Modifiers Value Explanation

kXR_mkdir 3008 Create a directory

 mode

 kXR_ur 0x01 00 Owner readable

 kXR_uw 0x00 80 Owner writable

 kXR_ux 0x00 40 Owner searchable (directories)

 kXR_gr 0x00 20 Group readable

 kXR_gw 0x00 10 Group writable

 kXR_gx 0x00 08 Group searchable (directories)

 kXR_or 0x00 04 Other readable

 kXR_ow 0x00 02 Other writable (not allowed)

 kXR_ox 0x00 01 Other searchable (directories)

 options

 kXR_mkdirpath 0x01 Create missing directories in path

 kXR_mv

XRootD Protocol Version 4.0.0 Page: 87

4.13 kXR_mv Request

Purpose: Rename a directory or file.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_mv kXR_unt16 kXR_ok
kXR_char reserved[14] kXR_int32 0
kXR_unt16 arg1len

kXR_int32 plen

kXR_char path[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

arg1len

the length of the first component in paths. If arg1len is zero, then paths is

scanned for spaces to delimit the components. See the notes for more

information.

plen binary length of the supplied old and new paths, paths.

path old name of the path (i.e., the path to be renamed) followed by a space

and then the name that the path is to have. Each path string may be

suffixed with CGI information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Renames across file systems are not supported.

kXR_mv

XRootD Protocol Version 4.0.0 Page: 88

3) Protocol verson 3.1.0 introduced arg1len in order to specify the actual

length of the first component to allow paths to have embedded spaces.

When arg1len is non-zero then the paths+arg1len should point to a space

character. All characters before paths+arg1len are used as the old name and

all characters after paths+arg1len+1 is taken as the new name.

4) When arg1len is zero (pre-3.1.0 behaviour), then paths is scanned for the

first space character and this becomes the breakpoint between the old

name and the new name.

Binary Definitions

Request Modifiers Value Explanation

kXR_mv 3009 Rename directory or file

 kXR_open

XRootD Protocol Version 4.0.0 Page: 89

4.14 kXR_open Request

Purpose: Open a file or a communications path.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_open kXR_unt16 kXR_ok
kXR_unt16 mode kXR_int32 rlen

kXR_unt16 options kXR_char fhandle[4]

kXR_char reserved[12] optional addition

kXR_int32 plen kXR_int32 cpsize

kXR_char path[plen] kXR_char cptype[4]

 kXR_char info[resplen-12]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

mode advisory mode in which path is to be opened. The mode is an “or’d”

combination of the following values:

Access Readable Writeable Executable
Owner kXR_ur kXR_uw kXR_ux
Group kXR_gr kXR_gw kXR_gx

Other kXR_or not supported kXR_ox

options

 options to apply when path is opened. The options are an “or’d”

combination of the following values:

 kXR_async - open the file for asynchronous i/o (see notes)

 kXR_compress - open a file even when compressed (see notes)

 kXR_delete - open a new file, deleting any existing file

 kXR_force - ignore file usage rules

 kXR_mkpath - create directory path if it does not already exist

 kXR_new - open a new file only if it does not already exist

 kXR_open_apnd - open only for appending

 kXR_open_read - open only for reading

 kXR_open_updt - open for reading and writing

 kXR_posc - enable Persist On Successful Close (POSC) processing

kXR_open

XRootD Protocol Version 4.0.0 Page: 90

 kXR_refresh - update cached information on the file’s location

 (see notes)

 kXR_replica - the file is being opened for replica creation

 kXR_retstat - return file status information in the response

 kXR_seqio - file will be read or written sequentially (see notes)

.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

plen binary length of the supplied path, path.

path path of the file to be opened. The path may be suffixed with CGI

information to provide additional information necessary to properly

process the request. See the following section on CGI information for more

information.

resplen

 byte length of the response that follows. At least four bytes should be

returned.

fhandle

 file handle for the associated file. The file handle should be treated as

opaque data. It should be used for subsequent kXR_close, kXK_read,

kXR_sync, and kXR_write requests.

cpsize compression page size. The cpsize field is returned when the

kXR_compress or kXR_retstat have been specified. Subsequent reads

should be equal to this value and read offsets should be an integral

multiple of this value. If cpsize is zero, the file is not compressed and

subsequent reads may use any offset and read length.

cptype name of the compression algorithm used to compress the file (e.g. lz4).

The cptype field is returned when the kXR_compress or kXR_retstat have

been specified. If the file is not compressed, the first byte of the four byte

field is a null byte (\0). For compressed files, subsequent reads should use

the returned algorithm to decompress each cpsize worth of data data.

 kXR_open

XRootD Protocol Version 4.0.0 Page: 91

info same information that kXR_stat returns for the file. This information is

returned only if kXR_retstat is set and the server is at protocol version

2.4.0 or greater. The cpsize and cptype fields are always returned and are

only meaningful if kXR_compress has been specified. Otherwise, cpsize

and cptype are set to values indicating that the file is not compressed.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Open fails if the path designates a directory.

3) No umask applies to the specified mode.

4) The kXR_async option tells the server to overlap file i/o with network

requests as much as possible for this file. For instance, read requests may

be done in parallel with other read requests sent on the same link. This

option is only useful if the client is able to issue multiple requests (i.e., is

not serializing the requests-response stream).

5) While the kXR_async option applies to write operations, as well. Server-

side asynchronous opportunities are far more limited. The client needs to

perform appropriate multiplexing of write requests with other requests to

gain improved parallelism.

6) The kXR_async option imposes additional overhead on the server and

should only be specified when the client can take advantage of request-

response parallelism.

7) The kXR_refresh option imposes additional overhead on the server

because it requires that the server obtain the most current information on

the file’s location before attempting to process the open request. This

option should only be used as part of the error recovery process outlined

in section “Client Recovery From File Location Failures”.

8) The kXR_refresh option is ignored by any server not functioning as a

primary redirecting server.

9) When a directory path is created, as requested by the kXR_mkpath

option, the directory permission of 0775 (i.e., rwxrwxr-x) are propagated

along the newly created path.

10) Only files may be opened using the kXR_open request code.

11) The kXR_retstat option is meant to eliminate an additional server request

for file status information for applications that always need such

information.

kXR_open

XRootD Protocol Version 4.0.0 Page: 92

12) The kXR_seqio option is meant to be advisory. A server may choose to

optimize data layout or access based on this hint. Misusing the hint may

lead to degraded performance.

13) The kXR_posc option requests safe file persistence which persists the file

only when it has been explicitly closed.

Binary Definitions

Request Modifiers Value Explanation

kXR_open 3010 Open a file

 mode

 kXR_ur 0x01 00 Owner readable

 kXR_uw 0x00 80 Owner writable

 kXR_ux 0x00 40 Owner searchable (directories)

 kXR_gr 0x00 20 Group readable

 kXR_gw 0x00 10 Group writable

 kXR_gx 0x00 08 Group searchable (directories)

 kXR_or 0x00 04 Other readable

 kXR_ow 0x00 02 Other writable

 kXR_ox 0x00 01 Other searchable (directories)

 options

 kXR_async 0x00 40 Allow asynchronous I/O

 kXR_compress 0x00 01 Open without inflating files

 kXR_delete 0x00 02 Delete any existing file

 kXR_force 0x00 04 Disregard locking rules

 kXR_mkpath 0x01 00 Create any missing directories

 kXR_new 0x00 08 Create a new file

 kXR_open_apnd 0x02 00 Open only for appending

 kXR_open_read 0x00 10 Open only for reading

 kXR_open_updt 0x00 20 Open for reading and writing

 kXR_open_wrto 0x80 00 Open only for writing

 kXR_posc 0x10 00 Persist on successful close

 kXR_refresh 0x00 80 Refresh cached information

 kXR_replica 0x08 00 Open for replication

 kXR_retstat 0x04 00 Return file stat information

 kXR_seqio 0x40 00 Open for sequential I/O

 kXR_open

XRootD Protocol Version 4.0.0 Page: 93

4.14.1 Additional Open CGI Tokens

The kXR_open request allows a client to pass CGI information to properly steer

the open. The information may or may not be acted upon, depending on the

server’s capabilities. The following table lists the defined CGI tokens.

Token Token Value
ofs.posc When set to a value of 1 requests “persist on successful close”

processing. This is historical as the kXR_posc option should be

preferentially used.
oss.asize The mber of bytes to reserve for a new file.
oss.cgroup The desired space name (a.k.a space token).

Notes

1) Unrecognized CGI tokens should be ignored.

2) Invalid arguments to a recognized CGI token should result in the

termination of the request.

Example

 /tmp/foo&oss.cgroup=index

 kXR_ping

XRootD Protocol Version 4.0.0 Page: 95

4.15 kXR_ping Request

Purpose: Determine if the server is alive.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_ping kXR_unt16 kXR_ok
kXR_char reserved[16] kXR_int32 0
kXR_int32 0

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Use the kXR_ping request to see if the server is running.

Binary Definitions

Request Modifiers Value Explanation

kXR_ping 3011 Send keep alive

 kXR_pgread

XRootD Protocol Version 4.0.0 Page: 97

4.16 kXR_pgread Request

Purpose: Read one or more integrity protected data pages from an open file.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_pgread kXR_unt16 kXR_status
kXR_char fhandle[4] kXR_int32 resplen

kXR_int64 offset kXR_unt32 crc32c
kXR_int32 rlen kXR_char streamid[2]

kXR_int32 alen kXR_char pgrid

 kXR_char pgrtype

 kXR_char reserved[4]

Arguments when alen > 0 kXR_int32 dlen

kXR_char pathid alen>0 kXR_int64 offset

kXR_char reqflags alen=2 kXR_char data[dlen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

offset binary offset from which the data is to be read. For best performance, the

offset should be an integral multiple of the page size. However, unaligned

offsets are allowed but require special data framing as described in a

subsequent section. In the response, it is the file offset from which the

returned data was read.

rlen binary maximum amount of data that is to be read.

alen binary length of the arguments that follow the request header.

pathid

 when alen is > 0, this is a path identifier returned by kXR_bind. The

response data is sent via this path, if possible. If pathid is not specified or is

zero, the login stream should be used to deliver the response. When pathid

is set to kXR_AnyPath then the server can use any bound path to return

the response.

kXR_pgread

XRootD Protocol Version 4.0.0 Page: 98

reqflags

 when alen >= 2, these are request flags, as follows:

 kXR_pgRetry - request is a retry of a previous request.

resplen

 binary length of the response that follows excluding the data portion.

crc32c CRC32-C as defined by the IETF RFC 7143 standard (see the kXR_status

response for details) of the resplen-sizeof(crc32c) bytes immediately after

crc32c. This means that the data portion, if any, should not be included in

the cr32c calculation.

pgrid response signature and should be equal to kXR_pgread-kXR_1stRequest.

pgrtype

 indicates the type of status being reported. Only the following type codes

are allowed relative to namespace XrdProto:

 kXR_FinalResult - All of the data has been transmitted.

 kXR_PartialResult - Partial data has been transmitted; additional data

 should be expected on this stream.

datalen

 binary length of the of the data, data, that was actually read plus associated

checksums.

data data that was read. Each page or page segment should be preceeded by a

4 byte CRC23C checksum. The first page may be shorter than a full page if

the offset is not page aligned. The last page may be shorter than a full

page if it is the last one in the file being read and is incomplete.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char, kXR_unt16 and kXR_unt32 data types are treated

as unsigned values. All reserved fields should be initialized to binary

zero.

2) Support for kXR_pgread may be determined from the kXR_protocol

response and testing for the presence of the kXR_suppgrw flag.

3) The fhandle value should be treated as opaque data.

4) The kXR_pgPageSZ defines the page size (currently 4096 bytes).

 kXR_pgread

XRootD Protocol Version 4.0.0 Page: 99

5) If more data is requested than the file contains, the last page may be

smaller than the actual page size.

6) Since a read may request more data than the allowable internal buffer size,

the data may be sent in fixed-sized segments until the request is satisfied.

This is accomplished using the kXR_status subcode kXR_PartialResult.

Any number of these status subcodes may be transmitted. However, the

final result should be transmitted using the kXR_FinalResult subcode.

For details, see the description of kXR_status.

7) The server may return a kXR_FinalResult with a data length of zero. The

offset in the response should be the offset at which the read would have

occurred. This may occur for implementation-specific reasons. However,

if the offset is beyond the end of the file this should always occur.

8) The kXR_pgread request should never return kXR_ok or kXR_oksofar

status codes as these are subsumed in the kXR_status response.

9) Sending requests using the same streamid when a kXR_PartialResult

subcode has been returned may produced unpredictable results unless

unique offsets are tracked. A client should serialize all requests using the

streamid in the presence of partial results.

10) To provide strong integrity, requests should use a TLS connection. Data

responses, however, are returned on the socket associated with pathid may

or may not use TLS. Checksums in the response provide the integrity so

TLS should generally be used only when privacy is required or to protect

againt an intervening malicious agent.

11) To maximize performance, the client should request that data be delivered

on a unecrypted bound socket. If the socket is not using TLS, the client

should verify

a. the crc32c checksum in the returned response is correct,

b. the pgrid signature is the expected response, and

c. the CRC32C checksum that preceeds each page matches the

checksum calculated for the subsequent data.

12) If the socket is using TLS then only pgrid needs to be verified.

kXR_pgread

XRootD Protocol Version 4.0.0 Page: 100

Binary Definitions

Request Modifiers Value Explanation

kXR_pgread 3030 Read pages from a file

--- --- --- ---

 kXR_AnyPath 0xff Use any bound path.

 kXR_pgPageSZ 4096

 kXR_pgUnitSZ 4100 kXR_pgPageSZ + sizeof(kXR_unt32)

 kXR_pgRetry 0x01 Request is a retry.

 kXR_1stRequest 3000 First request code.

4.16.1 Error recovery

4.16.1.1 Client

1. When a checksum error is detected in the response header none of the

data in the header can be trusted. This includes the indicated data length

which means the client cannot determine the actual amount of data the

server is returning. The only viable course of action is to close the stream

socket, recreate it if it is needed, and resubmit the request.

2. When a checksum error is detected in the returned data page the client

should request a replacement for the page in error. If on the second

attempt the checksums do not match it is likely that the data is corrupted

on the device and any additional retries are likely to be ineffective.

Additionally, the client should set the kXR_pgRetry flag in flags when

resuesting a replacement page or page segment to enable additional

checks should he server support them. The client should only request a

kXR_pgRetry replacement for a single page or page segment. Requesting

more than one page or crossing a page boundary in a kXR_pgRetry

request is undefined and the server may treat the request as if the flag

were not set.

4.16.1.2 Server

If a request indicates kXR_pgRetry the server should attempt to verify that

media corruption did not occur if at all possible. If media corruption did occur

and cannot be corrected, a checksum error should be returned. Otherwise, the

request may be treated as a normal kXR_pgread request.

 kXR_pgread

XRootD Protocol Version 4.0.0 Page: 101

4.16.2 Unaligned reads

The kXR_pgread request allows unaligned offsets (i.e. the read does not start on

a page boundary). By extension, a read need not read a multiple of the page size.

This is defined as a special case of a short segment, followed by full page

segments, followed by the ending segment. As such, the returned data reflects

this definition as shown in the following example.

Example 1: Read 8000 bytes at offset 2040

The server should never allow a data segment shorter than a page to cross a page

boundary. This allows the server to maintain the highest possible performance

when handling full pages. A degenerate case arises when an unaligned

kXR_pgread reads less than a page worth of data but the data crosses a page

boundary. The returned result is shown below.

Example 2: Read 4000 bytes at offset 2040

It follows that unaligned reads that do not cross a page boundary should be

returned as a single segment with a single checksum.

kXR_pgread

XRootD Protocol Version 4.0.0 Page: 102

4.16.3 Backward Compatability

The kXR_pgread request is meant to be used for new operations that require full

checksumming of the data being read. It may not be supported by all servers. In

order to provide backward compatability the client-side implementation should

perform the following steps if the server does not specify the kXR_suppgrw flag

in the kXR_protocol response (i.e. does not support kXR_pgread):

 Use a standard kXR_read request to satisfy the request, and

 If the connection is using TLS, optionally generate the checksums for each

page to be returned to the application.

 Otherwise, indicate to the application that while the data was read, no

checksums are available.

It is up to the application to decide the subsequent course of action.

 kXR_pgwrite

XRootD Protocol Version 4.0.0 Page: 103

4.17 kXR_pgwrite Request

Purpose: Write one or more integrity protected data pages to an open file.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_pgwrite kXR_unt16 kXR_status
kXR_char fhandle[4] kXR_int32 resplen

kXR_int64 offset kXR_unt32 crc32c

kXR_char pathid kXR_char streamid[2]
kXR_char reqflags kXR_char pgwid
kXR_char reserved[2] kXR_char kXR_FinalResult
kXR_int32 dlen kXR_char reserved[4]

kXR_char data[dlen] kXR_int32 elen

 kXR_int64 offset

 Appended when elen > 0

 kXR_unt32 csecrc

 kXR_int16 dlfirst

 kXR_int16 dllast

 kXR_int64 boffs[bnum]

Where: bnum = (elen – 8) / sizeof(kXR_int64)

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

offset binary offset at which the data is to be written. For highest performance,

the offset should be an integral multiple of the page size. Unaligned offsets

are allowed but require special data framing as described in the following

section. The offset in the response should match the offset in the request

relative to the streamid used.

pathid the path identifier returned by kXR_bind. The data should be sent via this

stream. If pathid is zero, the login stream should be used.

reqflags

 request flags, as follows:

 kXR_pgRetry - request is a retry of a previous request.

kXR_pgwrite

XRootD Protocol Version 4.0.0 Page: 104

dlen binary length of the data plus checksums sent.

data data to be written. Each page or page segment should be preceeded by a 4

byte CRC32C checksum.

resplen

 binary length of the response that follows.

crc32c CRC32-C as defined by the IETF RFC 7143 standard (see the kXR_status

response for details) of the resplen-sizeof(crc32c) bytes immediately after

crc32c.

pgwid response signature and should be equal to kXR_pgwrite-

kXR_1stRequest.

pgwtype

 indicates the type of status being reported. Only the following type code is

allowed relative to namespace XrdProto:

 kXR_FinalResult - All of the data has been received possibly with some

checksum errors (see notes).

csecrc CRC32-C as defined by the IETF RFC 7143 standard (see the kXR_status

response for details) of the elen-sizeof(csecrc) bytes immediately after

csecrc. This is the checksum of the appended extension.

dlfirst is the data length associated with the first boffs entry. This is the number of

bytes that need to be resent at boffs[0].

dllast is the data length associated with the last boffs entry. This is the number of

bytes that need to be resent at boffs[(elen–8)/sizeof(kXR_int64)-1].

boffs binary offset of each page that was sent whose checksum did not match.

The total number should be calculated as shown. The result should be

non-negative, have no remainder.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char, kXR_unt16 and kXR_unt32 data types are treated

as unsigned values. All reserved fields should be initialized to binary

zero.

 kXR_pgwrite

XRootD Protocol Version 4.0.0 Page: 105

2) Support for kXR_pgwrite may be determined from the kXR_protocol

response and testing for the presence of the kXR_suppgrw flag.

3) The fhandle value should be treated as opaque data.

4) The kXR_pgPageSZ defines the page size (currently 4096 bytes).

5) When pathid equals zero the client should use the login stream to send

a. the request header immediately followed by

b. exactly dlen bytes of data including checksums.

6) When pathid is not zero, then the client should

a. send the request header on the login stream and

b. send exactly dlen bytes of data including checksums on the stream

indentified by pathid.

7) To provide strong integrity requests should be sent using a TLS

connection. To provide performance, the data should be sent via a non-

TLS bound path.

8) A request should be considered invalid if it attempts to write less than a

single data byte either in the first and only segment or the last segment.

Binary Definitions

Request Modifiers Value Explanation

kXR_pgwrite 3026 Write pages to a file

--- --- --- ---

 kXR_1stRequest 3000 First request code.

 kXR_pgMaxEos 256 Maximum uncorrected errors

 kXR_pgMaxEpr 64 Maximum errors per request

 kXR_pgPageSZ 4096

 kXR_pgRetry 0x01 Request is a retry.

 kXR_pgUnitSZ 4100 kXR_pgPageSZ + sizeof(kXR_unt32)

kXR_pgwrite

XRootD Protocol Version 4.0.0 Page: 106

4.17.1 Error recovery

4.17.1.1 Client

When a client receives the response to kXR_pgwrite and the response contains

one or more offsets associated with pages or page segments whose checksum did

not match, the client should perform the following steps:

1. For each offset, resend the page or page segment with the kXR_pgRetry

flag set in flags. Unless this flag is set, the write request is not treated as a

correction and should result in an error should any uncorrected checksum

errors when the file is closed.

2. For the first offset in the list, use the dlfirst length as the the amount of data

that needs to be resent.

3. For the last offset in the list, use the dllast length as the amount of data that

needs to be resent.

4. For all offsets except the first and last, use kXR_pgPageSZ as the amount

of data that needs to be resent.

5. For each offset the resent data should be in a separate request. The client

should not combine adjacent offsets. Violating this restriction should

result in an error and rejection of the request.

4.17.1.2 Server

When the server detects a page or page segment in error due to a checksum

error, it should perform the following steps:

1. Record the offset to be sent back to the client when the request is

completed.

2. Limit the number of checksum errors in a single request. The lower bound

for the limit is defined by kXR_pgMaxEpr. A server may implement a

higher limit. When the limit is exceeded the request should fail with a

kXR_TooManyErrs eror code.

3. Record the offset and length of the page or page segment in error with the

associated file. The set of offset-length pairs defines the areas that should

be corrected before the file is closed.

4. Limit the number of outstanding checksum errors in the file. The lower

bound for the limit is defined by kXR_pgMaxEos. A server may

implement a higher limit. When the limit is exceeded the request should

fail with a kXR_TooManyErrs eror code.

 kXR_pgwrite

XRootD Protocol Version 4.0.0 Page: 107

When the server receives a kXR_pgwrite request with the kXR_pgRetry flag set

it should perform the following actions:

1. Reject the request if it attempts to write more than one page or page

segment.

2. Determine if the request is actually applying a correction based on the

recorded offset-length pairs or areas that need correction recorded with

the file. If the request’s offset-length is not in the list, the request should be

treated as a regular request. The server may log this as a client error.

3. Upon successfully correcting the data in error, remove the associated

offset-length pair from he list of areas that need to be corrected.

When the server receives a kXR_close request for a file that was subject to

kXR_pgwrite requests it should perform the following actions:

1. Return a kXR_ChkSumErr error if the file still has any outstanding

checksum errors (i.e. uncorrected errors).

2. Treat the file as if the client connection was lost. That is, perform a forced

close so that the underlying system is aware that file closure is not being

done upon request and if any recovery mechanism is in place (e.g. POSC

or checkpointing) they are to be applied to the file to recover from the

error.

It is unspecified what the server should do with a page in error. It is up to the

implementation to appropriately dispose of pages in error.

kXR_pgwrite

XRootD Protocol Version 4.0.0 Page: 108

4.17.2 Unaligned writes

The kXR_pgwrite request allows unaligned offsets (i.e. the write does not start

on a page boundary). By extension, a write need not write a multiple of the page

size. This is defined as a special case of a short segment, followed by full page

segments, followed by the ending segment. As such, the supplied data should

reflect this definition as shown in the following example.

Example 1: Write 8000 bytes at offset 2040

The server should never allow a data segment shorter than a page to cross a page

boundary. This allows the server to maintain the highest possible performance

when handling full pages. A degenerate case arises when an unaligned

kXR_pgrwrite writes less than a page worth of data but the data crosses a page

boundary. The data that should be supplied is shown below.

Example 2: Write 4000 bytes at offset 2040

It follows that unaligned writes that do not cross a page boundary should be

supplied as a single segment with a single checksum.

4.17.3 Backward Compatability

The kXR_pgwrite request is meant to be used for new operations that require

full checksumming of the data being written. It may not be supported by all

servers. In order to provide backward compatability the client-side

implementation should use a standard kXR_write request if the application

indicates that it wants to write data with checksums and the server did not

specify the kXR_suppgrw flag in the kXR_protocol response.

 kXR_prepare

XRootD Protocol Version 4.0.0 Page: 109

4.18 kXR_prepare Request

Purpose: Prepare one or more files for access.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_prepare kXR_unt16 kXR_ok
kXR_char options kXR_int32 rlen

kXR_char prty kXR_char resp[rlen]

kXR_unt16 port

kXR_unt16 optionX

kXR_char reserved[10]
kXR_int32 plen

kXR_char plist[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

options

 options to apply to each path. The notes explain how these options can be

used. The options are an “or’d” combination of the following:

 kXR_cancel - cancel a prepare request

 kXR_coloc - co-locate staged files, if at all possible

 kXR_fresh - refresh file access time even when location is known

 kXR_noerrs - do not send notification of preparation errors

 kXR_notify - send a message when the file has been processed

 kXR_stage - stage the file to disk if it is not online

 kXR_wmode - the file will be accessed for modification

optionX

 extended options to apply to each path. The options are an “or’d”

combination of the following:

 kXR_evict - the file is no longer needed.

prty binary priority the request is to have. Specify a value between 0 (the

lowest) and 3 (the highest), inclusive.

kXR_prepare

XRootD Protocol Version 4.0.0 Page: 110

port binary udp port number in network byte order to which a message is to be

sent, as controlled by kXR_notify and kXR_noerrs. If port is zero and

kXR_notify is set, notifications are sent via asynchronous messages via

the connected server, if possible.

reserved

 area reserved for future use and should be initialized to null (i.e., ‘\0’).

plen binary length of the supplied path list, plist.

plist list of new-line separated paths that are to be prepared for access. Each

path may be suffixed with CGI information. If only one path is supplied, it

need not be terminated with a new line character (\n). If kXR_cancel is

specified, then plist should be a prepare locatorid.

rlen binary length of the response, resp, that follows rlen.

resp response to request.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The kXR_prepare request attempts to make the indicated files available

for access. This may require that the files be brought in from a Mass

Storage device.

3) The kXR_prepare request always executes asynchronously. Therefore,

unless there are obvious errors in the request, a successful status code is

immediately returned.

4) The system makes no guarantees that the files will be made available for

access ahead of a future kXR_open request. Hence, the kXR_prepare

request is treated as merely a hint.

5) The kXR_prepare request should normally be directed to a load-balancing

server should one be present.

6) The when the prepare request has been accepted in the presence of the

kXR_stage option, the server returns a request locator (i.e., locatorid) as the

normal response. This locatorid should be treated as an opaque ASCII text

string. The locatorid can be used to cancel the request at some future time

and to pair up asynchronous messages with requests when kXR_notify

has been set.

 kXR_prepare

XRootD Protocol Version 4.0.0 Page: 111

7) kXR_coloc is only meaningful in the presence of kXR_stage when more

than one file has been specified.

8) Co-location of files is not guaranteed. When the kXR_coloc and

kXR_stage options are set, an attempt will be made to co-locate all

mentioned files in the request with the first file in the list of files.

9) Co-location may fail for many reasons, including but not limited to, files

already present at different locations, files present in multiple locations,

and insufficient space. The success if co-locations is implementation

defined.

Binary Definitions

Request Modifiers Value Explanation

kXR_prepare 3021 Prepare for future file access

 options

 kXR_cancel 0x01 Cancel previous prepare request

 kXR_notify 0x02 Send stage completion notification

 kXR_noerrs 0x04 Suppress error notifications

 kXR_stage 0x08 Stage in missing files

 kXR_wmode 0x10 Prepare for writing

 kXR_coloc 0x20 Colocate all specified files

 kXR_fresh 0x40 Update file access time

 options

 kXR_evict 0x0001 File is no longer needed.

 kXR_protocol

XRootD Protocol Version 4.0.0 Page: 113

4.19 kXR_protocol Request

Purpose: Obtain the protocol version number, type of server, and possible

security requirements.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_protocol kXR_unt16 kXR_ok
kXR_int32 clientpv kXR_int32 dlen

kXR_char options kXR_int32 pval
kXR_char expect kXR_int32 flags

kXR_char reserved[10] [Bind Preferences

kXR_int32 0 kXR_char ‘B’

 kXR_unt16 bplen

 kXR_char bindprefs

] [Security Requirements

 kXR_char ‘S’

 kXR_char reserved

 kXR_char secver

 kXR_char secopt

 kXR_char seclvl

 kXR_char secvsz | 0

 [Optional Overrides

 kXR_char {reqidx

 kXR_char reqlvl}[secvsz]

]]

dlen: 8 [+ 3 + bplen] [+ 14 + secvsz*2]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

clientpv

 the binary protocol version that the client is using. See the usage notes on

how to obtain the correct value. The clientpv field is recognized only in

protocol version 2.9.7 and above.

expect specifies what the client intends to do next and is optional. The presence

of an expect value allows a server to unilaterally transition the connection

to TLS if the subsequent intended operation requires TLS. This avoids an

additional roundtrip between the client and server. The expectations are

kXR_protocol

XRootD Protocol Version 4.0.0 Page: 114

encoded bits and the server should use the kXR_ExpMask to isolate the

bits. An invalid expectation setting should be treated as kXR_ExpNone

(i.e. no expectation). The expect value should be treated as an indication of

a single possible future action that may be taken by the client.

Single valid values are:

 kXR_ExpNone no intentions.

 kXR_ExpBind a kXR_bind request should be expected.

 kXR_ExpLogin a kXR_login should be expected.

 kXR_ExpGPF a kXR_gpfile should be expected.

 kXR_ExpGPFA an anonymous kXR_gpfile should be expected.

 kXR_ExpTPC a third party copy should be expected.

options

 specifies what should be returned. Without any options only the pval and

flags should be returned. This is also the case if the server does not

support support the return option or if no meaningful data exists for the

specific request. The options are:

 kXR_ableTLS client is TLS capable.

 kXR_pbareqs return kXR_bind preferences, if any.

 kXR_secreqs return protocol security signing requirements.

 kXR_wantTLS client wants to transition the connection to TLS.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

pval binary protocol version number the server is using.

 kXR_protocol

XRootD Protocol Version 4.0.0 Page: 115

flags additional bit-encoded information about the server. The following flags

are returned when clientpv is zero (i.e. not specified) or the server’s

protocol version is 2.9.6 or lower:

 kXR_DataServer - This is a data server.

 KXR_LBalServer - This is a load-balancing server.

 The following flags are returned when clientpv is not zero (i.e. is specified)

and the server’s protocol version is 2.9.7 or above:

 kXR_isManager - Has manager role.

 kXR_isServer - Has server role.

 kXR_attrMeta - Has the meta attribute (e.g. meta manager).

 kXR_attrProxy - Has the proxy attribute (e.g. proxy server).

 kXR_attrSuper - Has the supervisor attribute.

 kXR_anongpf - Allows anonymous kXR_gpfile requests.

 kXR_supgpf - Supports the kXR_gpfile request.

 kXR_suppgrw - Supports kXR_pgread & kXR_pgwrite requests.

 kXR_supposc - Supports persist on successful close option.

 kXR_haveTLS - Supports TLS connections.

 kXR_gotoTLS - Server has transitoned connection to use TLS.

 kXR_tlsData - Data must be sent over a TLS connection.

 kXR_tlsLogin - Login must use a TLS connection.

 kXR_tlsGPF - kXR_gpfile must use a TLS connection.

 kXR_tlsGPFA - anonymous kXR_gpfile must use a TLS connection.

 kXR_tlsSess - Connection transitions to TLS after login.

 kXR_tlsTPC - Third party copy must use a TLS connection.

Bind Preferences

 If the server supports kXR_pbareqs and the information is meaningful, at

least 3 additional bytes are returned:

 B the ASCII character B (0x42).

bplen length of the following bindprefs field, which may be zero.

bindprefs

 a comma separated list of hostname:port, ipv4addr:port, or

[ipv6addr]:port bind targets. The character string should end with a

null byte. If more than one target is present, the client should round-

robbin across the addresses for each kXR_bind request.

kXR_protocol

XRootD Protocol Version 4.0.0 Page: 116

Security Requirements

 If the server supports kXR_secreqs and the information is meaningful, at

least 6 additional bytes are returned:

 S the ASCII character S (0x53).

reserved

 a reserved byte that should be set to zero.

secver the controlling security version. Currently, only version 0 is defined

so the byte should be set to zero.

secopt security options:

 kXR_secOFrce apply signing requirements even if the

authentication protocol does not support generic

encryption.

seclvl the default security level to be used. The next section defines each of

5 predefined security levels.

secvsz the number of security override doublets that follow. Security

overrides allow a server to customize the predefined security level

specified in seclvl. If there are no security overrides, this byte should

be set to zero.

Security Overrides

 A server may customize any predefined security level by returning

alterations needed to the specified predefined security level. The

informationis contained in a vector of doubltes of size secvsz:

reqidx the request whose security requirements are to be changed. The

request code is specified as a request index. Specifically, it is the

kXR request code minux kXR_auth (the lowest numbered request

code). Security requitements are explained in the following section.

reqlvl the security requirement that the associated request is to have:

 kXR_signIgnore the request need not be signed.

 kXR_signLikely a signing requirement is likely and depends on

the request’s context. If the request modifies data

it should be interpreted as kXR_signNeeded.

Otherwise, it should be interpreted as

kXR_signNone.

 kXR_signNeeded the request must be signed.

 kXR_protocol

XRootD Protocol Version 4.0.0 Page: 117

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The client should not rely on the response data length being 8. In the

future, additional information may be returned.

3) The protocol version is defined by kXR_PROTOCOLVERSION in the

header file that defines protocol values and data structures.

4) When the client specifies its protocol version in clientpv, the server may

use that information to tailor responses to be compatible with the stated

version. Since any number of kXR_protocol requests can be issued, the

authoritative protocol version is considered to be the one in effect after the

kXR_login request succeeds. After that time, the client’s protocol version

is immutable until the next login.

5) For kXR_bind requests, the client’s protocol version is forced to be the

same as that the base login stream to which the bind request refers.

6) When testing the bits in flags in the protocol response when clientpv is

specified, the following order should be used:

a. kXR_isManager -> role manager

 kXR_attrMeta -> role meta manager

kXR_attrProxy -> role proxy manager

kXR_attrSuper -> role supervisor

b. kXR_isServer -> role server

kXR_attrProxy -> role proxy server

c. If none of the above, treat as role manager.

7) The protocol specifies that a client should affiliate with the first manager

or the last meta-manager encountered. Client retry requests should be sent

to the affiliated [meta] manager established during the connection phase.

8) Protocol version 2.9.7 provides for a mechanism to determine whether a

connection target is a manager or a meta-manager. Clients using lower

versions of the protocol do not have that capability and consequently treat

managers and meta-managers identically. While this does not cause

functional problems, it markedly reduces efficiency when retrying

requests in the presence of multiple meta-managers that control different

sets of clusters.

kXR_protocol

XRootD Protocol Version 4.0.0 Page: 118

9) Protocol version 3.1.0 introduced a mechanism to verify that requests

came from an authenticated client. Pre 3.1.0 servers should never return

security information when requested to do so. Servers that have no

security requirements need not return any security information when

requested to do so. When security information has not been returned the

client should assume that no requirements exist.

10) Protocol version 4.0.0 introduced a mechanism to create bound data

channels to alternate server interfaces. Pre 4.0.0 servers should never

return bind information when requested to do so. Servers that have no

bind preferences need not return any bind preference information when

requested to do so. When bind preferences have not been returned the

client should assume that no preferences exist.

11) The kXR_protocol request should be used to transition a normal

connection to one that uses TLS. The client requests such a transition by

setting the kXR_wantTLS flag in options. If the option is set and the server

supports TLS, it should transition the connection to use TLS after the

response is sent. The server may also unilaterally transition the connection

to use TLS after sending the response based on the expect flags which

indicate what the client intends to do next. When a connection will

transition to use TLS immediately afer the response is sent, the

kXR_gotoTLS should be set in the response to indicate the client should

also transition to TLS. Th flag should not be set if the conection will not

transition to TLS mode (e.g. the connection is already in TLS mode).

12) Clients should indicate whether or not they can use TLS on the connection

by setting the kXR_ableTLS option. Should only the kXR_wantTLS

option be set, severs should assume the kXR_ableTLS option is also in

effect.

13) If the server does not support TLS, none of the TLS related flags should

be set in flags. Otherwise, settings are left up to the implementation, except

as noted below.

14) The kXR_tlsLogin and kXR_tlsSess flags are mutually exlusive. Should

both be erroneously set, the client should ignore the kXR_tlsSess setting.

15) The kXR_tlsGPFA flag may be set without kXR_tlsLogin or kXR_tlsSess

being set as anonymous kXR_gpfile does not require a login or session.

16) If the server supports kXR_gpfile requests, the kXR_supgpf flag should

be set. The client should ignore the kXR_anongpf flag if kXR_supgpf flag

is not set.

17) If the kXR_tlsTPC flag is set, the server should also set the kXR_tlsLogin

or kXR_tlsSess flag as well. In the erroneous absence of either flag, the

client should assume kXR_tlsSess.

 kXR_protocol

XRootD Protocol Version 4.0.0 Page: 119

Binary Definitions

Request Modifiers Value Explanation
kXR_protocol 3006 Ascertain server’s protocol

 clientpv Client’s protocol version

 0x00 00 02 45 Protocol version 2.4.5 (2005)

 0x00 00 02 96 Protocol version 2.9.6 (2010)

 0x00 00 02 99 Protocol version 2.9.9 (2011)

 0x00 00 03 00 Protocol version 3.0.0 (2013)

 0x00 00 03 10 Protocol version 3.1.0 (2016)

 0x00 00 04 00 Protocol version 4.0.0 (2018)

 expect

 kXR_expMask 0x0f Mask to isolate expect enum encoding

 kXR_ExpNone 0x00 No expectations

 kXR_ExpBind 0x01 Expect a kXR_bind

 kXR_ExpGPF 0x02 Expect kXR_gpfile

 kXR_ExpGPFA 0x05 Expect anonymous kXR_gpfile

 kXR_ExpLogin 0x03 Expect a kXR_login

 kXR_ExpTPC 0x04 Expect a third party copy request

 options

 kXR_ableTLS 0x02 Client is TLS capable

 kXR_bpareqs 0x08 Return kXR_bind preferences

 kXR_secreqs 0x01 Return security requirements

 kXR_wantTLS 0x04 Client wants to transition to TLS

Response flags

 kXR_DataServer 0x00 00 00 01 Node is a data server

 kXR_LBalServer 0x00 00 00 00 Node is not a data server

 kXR_isManager 0x00 00 00 02 Node has a manager role

 kXR_isServer 0x00 00 00 01 Node has a server role

 kXR_attrMeta 0x00 00 01 00 Node has a meta role attribute

 kXR_attrProxy 0x00 00 02 00 Node has a proxy role attribute

 kXR_attrSuper 0x00 00 04 00 Node has a supervisor role attribute

 kXR_anongpf 0x00 80 00 00 Allows anonymous kXR_gpfile

 kXR_supgpf 0x00 40 00 00 Supports kXR_gpfile

 kXR_suppgrw 0x00 20 00 00 Supports kXR_pgread & kXR_pgwrite

 kXR_supposc 0x00 10 00 00 Supports kXR_posc open option

 kXR_haveTLS 0x80 00 00 00 Supports TLS connections

 kXR_gotoTLS 0x40 00 00 00 Connection will transition to TLS mode

 kXR_tlsAny 0x1f 00 00 00 Mask to isolate requirement flags

 kXR_tlsData 0x01 00 00 00 All data requires a TLS connection

 kXR_tlsGPF 0x02 00 00 00 kXR_gpfile requires TLS

 kXR_tlsGPFA 0x20 00 00 00 Anonymous kXR_gpfile requires TLS

 kXR_tlsLogin 0x04 00 00 00 kXR_login requires a TLS connection

 kXR_tlsSess 0x08 00 00 00 Connection transition to TLS after login

 kXR_tlsTPC 0x10 00 00 00 TPC requests require a TLS connection

kXR_protocol

XRootD Protocol Version 4.0.0 Page: 120

 pval see clientpv Server’s protocol version

Request Modifiers Value Explanation
 reqlvl

 kXR_signIgnore 0x00 Signature is not needed

 kXR_signLikely 0x01 Signature needed when modifying

 kXR_signNeeded 0x02 Signature need in all cases

 seclvl

 kXR_secCompatible 0x01

 kXR_secStandard 0x02

 kXR_secIntense 0x03

 kXR_secPedantic 0x04

 secopt

 kXR_secOData 0x01 Write data must be signed

 kXR_secOFRCE 0x02 Sign requests even if unencrypted

 kXR_protocol

XRootD Protocol Version 4.0.0 Page: 121

4.19.1 Client’s expect setting & Server’s TLS Requirement Response

 Client’s Expect Setting vs Server’s TLS Requirement Flag Settings

Client’s

Expect Setting

tlsData

tlsLogin or

tlsSess

tlsGPF

tlsGPFA

tlsTPC

gotoTLS

none Only if

required

Only if

required

Only if

required

Only if

required

Only if

required

no

ExpBind Only if

required

immaterial

immateral

immaterial

immaterial

Only if

tlsData

ExpGPF Only if

required

Only if

required

Only if

required

immaterial

Only if

required

Only if

tlsLogin

ExpGPFA

immaterial

immaterial

immaterial

Only if

required

immaterial

Only if

tlsGPFA

ExpLogin Only if

required

Only if

required

Only if

required

immaterial

Only if

required

Only if

tlsLogin

ExpTPC Only if

required

Only if

tlsTPC

Only if

required

immaterial

Only if

required

Only if

tlsLogin

Flag Explanation of Client’s kXR_Expxxx Setting

none When the expect value is zero the client is not declaring any future action and the

server should have no expectations. The server’s flag settings should cover the TLS

requirements for all possible subsequent client requests.

ExpBind Client plans to issue a kXR_bind request (note: kXR_login is disallowed).

ExpGPF Client plans to issue a kXR_gpfile request after a kXR_login request.

ExpGPFA Client plans to issue a kXR_gpfile request without a kXR_login request.

ExpLogin Client plans to issue a kXR_login request.

ExpTPC Client plans to issue a kXR_open request that initiates a third-party copy after a

kXR_login request.

Flag Client’s Interpretation of Server’s kXR_xxx Flag Settings

gotoTLS Connection should convert to using TLS as the server has already converted its side

of the connection. The server should set this flag in the response

tlsData When this flag is set then data transmission (i.e. reads and writes) should be

encrypted via a TLS connection. This applies to the session connection as well as any

connection bound to the session connection using kXR_bind. When not set the

session connection may be forced to use TLS due to other flag settings but bound

connections need not use TLS.

tlsGPF Connection should be using TLS prior to a kXR_gpfile request.

tlsGPFA Connection should be using TLS prior to an anonymous kXR_gpfile request.

tlsLogin Connection should be converted to TLS prior to a kXR_login request.

tlsSess Connection should be using TLS for any request issued after the kXR_login request.

tlsTPC Connection should be using TLS prior to issuing a kXR_open request that results in a

third-party copy. While converting a connection to TLS could be delayed until the

actual kXR_open, the protocol requires that the connection be converted prior

kXR_login (tlsLogn) or post kXR_login (tlsSess) and the correct flag should be set.

kXR_protocol

XRootD Protocol Version 4.0.0 Page: 122

Setting Explanation Server Setting Decision

immaterial The server may set the column heading flag if TLS required but the client should not

use the information for the planned request or any future request on the connection.

Only if

required

The server should set the column heading flag if it is required to meet the site’s

security policy.

Only if

tlsData

The server should set gotoTLS if it set the tlsData and the client set ExpBind. After

the response, the server should convert its side of the connection to TLS.

Only if

tlsGPFA

The server should set gotoTLS if it set the tlsGPFA and the client set ExpGPFA. After

the response, the server should convert its side of the connection to TLS.

Only if

tlsLogin

The server should set gotoTLS if it set the tlsLogin and the client set ExpGPF,

ExpLogin, or ExpTPC. After the response, the server should convert its side of the

connection to TLS.

Only if

tlsTPC

The server should set tlsLogin or tlsSess, but not both, if it set tlsTPC and the client

set ExpTLS. The choice on which flag to set is dictated by the site’s security policy.

Only if

tlsGPFA

Client plans to issue a kXR_open request that initiates a third-party copy after a

kXR_login request.

 kXR_protocol

XRootD Protocol Version 4.0.0 Page: 123

4.19.2 Protocol Security Requirements vs Response Implications

The xroot protocol provides capabilities to verify that a request came from the

previously authenticated client. The verification consists of prefixing a request

with a kXR_sigver request that contains the cryptographic signature of the

subsequent request to be verified. The specification of request signature and

verification is explained in the kXR_sigver section. The kXR_protocol request

allows a client to determine which requests need to be signed. The table below

shows the signing requirements by request for each predefined security level.

Request Compatible Standard Intense Pedantic
kXR_auth kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signIgnore

kXR_bind kXR_signIgnore kXR_signIgnore kXR_signNeeded kXR_signNeeded

kXR_chkpoint kXR_signNeeded kXR_signNeeded kXR_signNeeded kXR_signNeeded

kXR_chmod kXR_signNeeded kXR_signNeeded kXR_signNeeded kXR_signNeeded

kXR_close kXR_signIgnore kXR_signIgnore kXR_signNeeded kXR_signNeeded

kXR_dirlist kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signNeeded

kXR_endsess kXR_signIgnore kXR_signIgnore kXR_signNeeded kXR_signNeeded

kXR_fattr kXR_signNeeded kXR_signNeeded kXR_signNeeded kXR_signNeeded

kXR_gpfile kXR_signNeeded kXR_signNeeded kXR_signNeeded kXR_signNeeded

kXR_locate kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signNeeded

kXR_login kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signIgnore

kXR_mkdir kXR_signIgnore kXR_signNeeded kXR_signNeeded kXR_signNeeded

kXR_mv kXR_signNeeded kXR_signNeeded kXR_signNeeded kXR_signNeeded

kXR_open kXR_signLikely kXR_signNeeded kXR_signNeeded kXR_signNeeded

kXR_pgread kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signNeeded

kXR_pgwrite kXR_signIgnore kXR_signIgnore kXR_signNeeded kXR_signNeeded

kXR_ping kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signIgnore

kXR_prepare kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signNeeded

kXR_protocol kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signIgnore

kXR_query kXR_signIgnore kXR_signIgnore kXR_signLikely kXR_signNeeded

kXR_read kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signNeeded

kXR_readv kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signNeeded

kXR_rm kXR_signNeeded kXR_signNeeded kXR_signNeeded kXR_signNeeded

kXR_rmdir kXR_signNeeded kXR_signNeeded kXR_signNeeded kXR_signNeeded

kXR_set kXR_signLikely kXR_signLikely kXR_signNeeded kXR_signNeeded

kXR_sigver kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signIgnore

kXR_stat kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signNeeded

kXR_statx kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signNeeded

kXR_sync kXR_signIgnore kXR_signIgnore kXR_signIgnore kXR_signNeeded

kXR_truncate kXR_signNeeded kXR_signNeeded kXR_signNeeded kXR_signNeeded

kXR_write kXR_signIgnore kXR_signIgnore kXR_signNeeded kXR_signNeeded

kXR_protocol

XRootD Protocol Version 4.0.0 Page: 124

A server uses kXR_protocol request to specify the security level in effect and any

specific overrides. Hence, the protocol provides a framework for, not an absolute

definition of, security requirements.

 Predefined security levels simplify handling of security requirements. The

protocol pre-defines 5 security levels that can be specified in seclvl:

kXR_secNone No security requirements exist.

kXR_secCompatible A security requirement exists only for potentially

destructive requests. (i.e. ones that modify data or

metadata).

kXR_secStandard A security requirement exists for potentially destructive

requests. (i.e. ones that modify data or metadata) as well

as certain non-destructive requests.

kXR_secIntense A security requirement exists only for pq wide range of

requests that may reveal metadata or modify data.

kXR_secPedantic Security requirements apply to all requests.

For each request, one of three scenarios exist at each security level:

kXR_signIgnore The request need not be signed.

kXR_signLikely The request needs to be signed if it may modify data or

metadata.).

kXR_signNeeded The request must be signed.

The kXR_signLikely is the most problematic because it needs to be interpreted

the context of what the request is actually doing. Only three requests need to be

examined more deeply to determine whether or not they need to be signed.

kXR_open must be signed if any of the options: kXR_delete,

kXR_new, kXR_open_updt, kXR_mkath, and

kXR_open_apnd has been specified.

kXR_query must be signed if any of the options: kXR_Qopque,

kXR_qopaquf, and kXR_Qopaqug have been specified.

kXR_set must be signed if any request options (i.e. a non-default

set operation) have been specified.

 kXR_query

XRootD Protocol Version 4.0.0 Page: 125

4.20 kXR_query Request

Purpose: Obtain server information.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_query kXR_unt16 kXR_ok
kXR_unt16 reqcode kXR_int32 ilen

kXR_char reserved[2] kXR_char info[ilen]

kXR_char fhandle[4]

kXR_char reserved[8]
kXR_int32 alen

kXR_char args[alen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request. Only kXR_Qvisa supports fhandle.

reqcode

 binary code indicating the specific query being made. Valid codes are:

 kXR_Qconfig Query server configuration

 kXR_Qckscan Query file checksum cancellation

 kXR_Qcksum Query file checksum

 kXR_Qopaque Query implementation-dependent information

 kXR_Qopaquf Query implementation-dependent information

 kXR_Qopaqug Query implementation-dependent information

 kXR_QPrep Query prepare status

 kXR_Qspace Query server logical space statistics

 kXR_Qstats Query server statistics

 kXR_Qvisa Query file visa attributes

 kXR_Qxattr Query file extended attributes

kXR_query

XRootD Protocol Version 4.0.0 Page: 126

alen binary length of the supplied arguments, args.

args arguments to the query, specific to the reqcode.

ilen binary length of the information, info, that follows ilen.

info requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Responses to kXR_Qspace and kXR_Qxattr requests are documented in

the Open File System (ofs) and Open Storage System (oss) configuration

reference. Responses to kXR_Qopaque and kXR_Qopaquf are

implementation dependent. This query type should not be used for

portable programs.

3) Unstructured data may be passed using the kXR_Qopaque. The

kXR_Qopaquf reqcode is meant for structured arguments (i.e., valid path

and CGI information).

4) The kXR_waitresp response is not an error response but merely indicates

that the response may take approximately seconds of time to deliver and

should be reported using the unsolicited response mechanism (i.e.,

kXR_attn with kXR_asynresp). Refer to the description of each server

response for detailed handling information.

5) A delayed response appears in protocol version 2.5.0 or higher. Earlier

protocol versions did not use the delayed response mechanism.

 kXR_query

XRootD Protocol Version 4.0.0 Page: 127

Binary Definitions

Request Modifiers Value Explanation

kXR_query 3001 Return information

 reqcode

 kXR_QStats 0x00 01 Return statistics

 kXR_QPrep 0x00 02 Return prepare status

 kXR_Qcksum 0x00 03 Return checksum

 kXR_qxattr 0x00 04 Return extended space attributes

 kXR_qspace 0x00 05 Return space information

 kXR_qckscan 0x00 06 Return checksum cancellation info

 kXR_Qconfig 0x00 07 Return configuration information

 kXR_Qvisa 0x00 08 Return visa status

 kXR_Qopaque 0x00 10 Return implementation

information #1

 kXR_Qopaquf 0x00 20 Return implementation

information #2

 kXR_Qopaqug 0x00 40 Return implementation

information #3

 kXR_Qckscan

XRootD Protocol Version 4.0.0 Page: 129

4.20.1 KXR_query Checksum Cancellation Request

Purpose: Obtain server information.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_query kXR_unt16 kXR_ok
kXR_unt16 kXR_Qckscan kXR_int32 0

kXR_char reserved[14]

kXR_int32 plen

kXR_char path[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

plen binary length of the supplied path, path.

path path of the file whose check sum is to be cancelled. The path may be

suffixed with CGI information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Only check sums requested by the current client may be cancelled.

 kXR_Qcksum

XRootD Protocol Version 4.0.0 Page: 131

4.20.2 KXR_query Checksum Request

Purpose: Obtain server information.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_query kXR_unt16 kXR_ok
kXR_unt16 kXR_Qcksum kXR_int32 ilen

kXR_char reserved[14] kXR_char info[ilen]

kXR_int32 plen

kXR_char path[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

plen binary length of the supplied path, path.

path path of the file whose checksum is to be returned. The path may be

suffixed with CGI information.

ilen binary length of the information, info, that follows ilen.

info requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Each installation determines the type of checksum that will be returned.

The algorithmic name of the checksum precedes the checksum value.

kXR_Qcksum

XRootD Protocol Version 4.0.0 Page: 132

Returned Response

The general format for the kXR_Qcksum response is:

csname csvalue

Where:

csname

 algorithmic name of the checksum algorithm used. This name is selected

by the administrator.

csvalue

 checksum name as a hexadecimal ASCII text string. The format is

dependent on the algorithm used to compute the checksum.

4.20.2.1 Additional Query Checksum CGI Tokens

The kXR_Qcksum request allows a client to pass CGI information to select a

particular checksum should the server support multiple checksums. The

information may or may not be acted upon, depending on the server’s

capabilities. CGI information is passed by suffixing the path with a question mark

(?) and then coding the cgi information as shown below:

path?cks.cktype=arg

Where:

arg name of the desired checksum.

Notes

1) Invalid values or arguments to a recognized directive normally result

in termination of the request.

Example
 /tmp/foo?cks.cktype=md5

 kXR_Qconfig

XRootD Protocol Version 4.0.0 Page: 133

4.20.3 KXR_query Configuration Request

Purpose: Obtain server information.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_query kXR_unt16 kXR_ok
kXR_unt16 kXR_Qconfig kXR_int32 ilen

kXR_char reserved[14] kXR_char info[ilen]

kXR_int32 qlen

kXR_char qry[qlen]

qry: cmsd | xrootd |vars

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

qlen binary length of the supplied query arguments, qry.

qry configuration variables to be displayed:

 cmsd the effective cmsd server configuration.

 xrootd the effective xrootd server configuration.

 vars other information as described below.

vars space-separated names of the variables to be returned. Current variables

that may be queried are:

 bind_max maximum number of sockets that may be bound to login

session.

 chksum checksum algorithm name supported by the server as

“n:name” where n is the algorithm numeric id and name is

it’s name. If more than one algorithm is supported, they

are listed, each separated by a comma.

 cid the globally unique cluster identification string.

kXR_Qconfig

XRootD Protocol Version 4.0.0 Page: 134

 cms the current dynamic state of the cluster management

service configuration. See the next section for the format.

 fattr the kXR_fattr request limits. The response, if supported,

should contain three tokens: “maxattrs maxnlen maxvlen”

 maxattrs - maximum number of bundled requests

 maxnlen - maximum length for a name

 maxvlen - maximum length for attribute data

 pio_max maximum number of requests that may be queued on a

bound socket before the session stream must wait.

 readv_ior_max maximum amount of data that may be requested in a

single kXR_readv request element.

 readv_iov_max maximum number of elements in a kXR_readv request

vector.

 role the configured role. If no role has been configured

“none” is returned

 sitename the site name associated with the server. If no sitename is

associated, returned value is the token ‘sitename’.

 start the UNIX time the server was started.

 tls_port the port number to connect to for an TLS encrypted

connection.

 tpc version number for third party copy protocol. If third

party copy protocol is not supported, “tpc” is returned.

Otherwise, an integer value is returned.

 tpcdlg a space-separated list of authentication protocol names

that can be used for TPC delegation, if delegation is

actually supported.

 version version identification string (implementation dependent).

 vnid the specified virtual network identifier, if any.

 window socket buffer size (i.e., window) for the default port.

 xattrs user settable extended attribute limits.

ilen binary length of the information, info, that follows ilen.

info requested information.

 kXR_Qconfig

XRootD Protocol Version 4.0.0 Page: 135

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Clients should avoid issuing configuration query requests to a redirector

as this may not reflect the actual limits imposed by a server. Instead,

configuration requests should be obtained for each server.

Returned Response

The general format for the kXR_Qconfig response consists of a list of new-line

delimited value in 1-to-1 correspondence to the list of supplied variable:

Cvalue\n[Cvalue\n[. . .\n]]

Where:

Cvalue

 corresponding value associated with the queried variable. If the variable

has no value then the name of the variable is returned as Cvalue.

kXR_Qconfig

XRootD Protocol Version 4.0.0 Page: 136

4.20.3.1 Format for Query Config cms

The general format for the kXR_Qconfig cms response consists of a space

delimited list of host for which outbound connections have been configured and

their current state. It should be interpreted in the context of the configured role

(ie. kXR_query role):

host:port/state

state: c | d | s

Where:

host:port

 hostname or IP address of the endpoint to which a connection is to be

made. For server roles the host:port should always be indicated as

localhost:0 to indicate that the clustering service is local.

status status of the connection:

 c - the endpoint is connected.

 d - the endpoint is disconnected

 s - the endpoint is connected but is in a suspended state.

 kXR_Qconfig

XRootD Protocol Version 4.0.0 Page: 137

4.20.3.2 Format for Query Config role

The general format for the kXR_Qconfig role response consists of a space

delimited tokens describing the configured role. The role should be one of the

following:

 meta manager

 manager

 supervisor

 server

 proxy manager

 proxy supervisor

 proxy server

4.20.3.3 Format for Query Config xattrs

The general format for the kXR_Qconfig xattrs response consists of two numbers

as follows:

maxnsz maxvsz

Where:

maxnsz

 maximum length a client can specify for an attribute name. If the value is

zero, then client settable extended attributes are not allowed.

maxvsz

 maximum length a client can specify for an attribute value.

 kXR_Qopaque

XRootD Protocol Version 4.0.0 Page: 139

4.20.4 KXR_query Opaque Request

Purpose: Obtain implementation-dependent server information.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_query kXR_unt16 kXR_ok
kXR_unt16 querycode kXR_int32 ilen

kXR_char reserved[2] kXR_char info[ilen]

kXR_char fhandle

kXR_char reserved[8]

kXR_int32 qlen

kXR_char qry[qlen]

querycode: kXR_Qopaque | kXR_Qopaquf | kXR_Qopaqug

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

querycode

 one of the specified query codes. Each code takes different arguments:

 kXR_Qopaque - qry is passed to the filesystem plug-in without

interpretation.

 kXR_Qopaquf - qry is interpreted as a path and optional cgi string. If the

path is valid, qry is passed to the filesystem plug-in.

 kXR_Qopaqug - qry is passed along without inspection to the file plug-in

associated with fhandle.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request. Only kXR_Qopaqug uses this field.

qlen binary length of the information, qry, that follows qlen.

qry information to be passed to the appropriate plug-in.

kXR_ Qopaque

XRootD Protocol Version 4.0.0 Page: 140

ilen binary length of the information, info, that follows ilen.

info requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) These subcodes provide a mechanism to use special implementation

specific features. Use of these subcodes is not portable.

 kXR_Qspace

XRootD Protocol Version 4.0.0 Page: 141

4.20.5 KXR_query Space Request

Purpose: Obtain server information.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_query kXR_unt16 kXR_ok
kXR_unt16 kXR_Qspace kXR_int32 ilen

kXR_char reserved[14] kXR_char info[ilen]

kXR_int32 slen

kXR_char sname[slen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

slen binary length of the supplied path, sname.

sname logical name of the space whose statistics are to be returned.

ilen binary length of the information, info, that follows ilen.

info requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Each installation determines the type of logical spaces that exist and the

values that can be returned for them.

6) The response to the kXR_Qspace request is documented in the Open File

System (ofs) and Open Storage System (oss) configuration reference.

3) If sname is empty, the name “public” is used.

 kXR_Qstats

XRootD Protocol Version 4.0.0 Page: 143

4.20.6 KXR_query Statistics Request

Purpose: Obtain server information.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_query kXR_unt16 kXR_ok
kXR_unt16 kXR_QStats kXR_int32 ilen

kXR_char reserved[14] kXR_char info[ilen]

kXR_int32 alen

kXR_char args[alen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

alen binary length of the supplied arguments, args.

args optional list of letters, each indicating the statistical components to be

returned. Valid letters are:

 a - Return all statistics (default) p - Protocol statistics

 b - Buffer usage statistics s - Scheduling statistics

 d - Device polling statistics u - Usage statistics

 i - Server identification z – Synchronized statistics

 l - Connection statistics

ilen binary length of the information, info, that follows ilen.

info requested information.

kXR_ Qstats

XRootD Protocol Version 4.0.0 Page: 144

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Statistical information is returned as an XML text string. The XML schema

is outlined below.

3) By default, the server returns statistical information that is readily

available. The “z” option, informs the server that the information returned

must be the accurate in real-time. This requires that the server synchronize

activities before gathering information. While this is not this is not a

resource intensive activity, it is one that may take considerable amount of

elapsed time. The client using “z” option should be ready to wait a

significant amount of time for a response.

Returned Response

The general XML schema for the kXR_Qstats response is:

<statistics tod=”time” ver=”version”>details</statistics>

details: <stats id=”sect”>details</stats>[details]

Where:

time Unix time() value of when the statistics were generated.

vers XRootD version identification string.

setc section name assigned to the statistical information. Currently, the

following section names should be expected to occur:

 id arg Information

 buff b - Buffer usage statistics.

 Cms p - Cluster Management Services

 info i - Server identification.

 link l - Connection (i.e., link) statistics.

 ofs p - Open File System layer

 oss p - Open Storage System layer

 poll d - Device polling statistics.

 kXR_Qstats

XRootD Protocol Version 4.0.0 Page: 145

 proc u - Process usage statistics.

 rootd p - Protocol statistics for rootd.

 sched s - Scheduling statistics.

 XRootD p - Protocol information for XRootD.

Notes

1) Each subsection is bracketed by <stats> and </stats> tags.

2) Sections appear in a server-defined order. The sections, corresponding to

each requested letter code, are returned.

3) The detailed contents of each section beyond what is described here is

implementation dependent.

 kXR_Qvisa

XRootD Protocol Version 4.0.0 Page: 147

4.20.7 KXR_query Visa Request

Purpose: Obtain server information.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_query kXR_unt16 kXR_ok
kXR_unt16 kXR_QVisa kXR_int32 ilen

kXR_char reserved[2] kXR_char info[ilen]

kXR_char fhandle

kXR_char reserved2[8]

kXR_int32 0

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request.

ilen binary length of the information, info, that follows ilen.

info requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The response to the kXR_Qvisa request is documented in the Bandwidth

Manager Configuration reference.

 kXR_Qxattr

XRootD Protocol Version 4.0.0 Page: 149

4.20.8 KXR_query Xattr Request

Purpose: Obtain server information.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_query kXR_unt16 kXR_ok
kXR_unt16 kXR_QXattr kXR_int32 ilen

kXR_char reserved[14] kXR_char info[ilen]

kXR_int32 plen

kXR_char path[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

plen binary length of the supplied path, path.

path path of the file whose extended attributes are to be returned. The path may

be suffixed with CGI information.

ilen binary length of the information, info, that follows ilen.

info requested information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The response to the kXR_Qxattr request is documented in the Open File

System (ofs) and Open Storage System (oss) configuration reference.

3) The kXR_Qxattr request bears no relationship to the kXR_fattr request.

 kXR_read

XRootD Protocol Version 4.0.0 Page: 151

4.21 kXR_read Request

Purpose: Read data from an open file.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_read kXR_unt16 status
kXR_char fhandle[4] kXR_int32 dlen

kXR_int64 offset kXR_char data[dlen]

kXR_int32 rlen

kXR_int32 alen

alen > 0: read_args

read_args readahead_list
kXR_char pathid kXR_char fhandle2[4]
alen > 8: kXR_int31 rlen2

kXR_char reserved[7] kXR_int64 roffset2
 readahead_list[n]

n = (alen-8)/16 with no remainder

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

status ending status of this request. Only the following two status codes indicate

a normal ending:

 kXR_ok - All of the data has been transmitted without error.

 kXR_oksofar - Partial data has been transmitted without error;

 additional data should be expected on this stream.

offset binary offset from which the data is to be read.

rlen binary maximum amount of data that is to be read.

alen binary length of the arguments that follow the request header. These

arguments may include the pathid and read-ahead request list,

read_aheadlist. If no data is to be pre-read, alen should be set to less than

or equal to eight (typically zero).

kXR_read

XRootD Protocol Version 4.0.0 Page: 152

pathid pathid returned by kXR_bind. The response data is sent to this path, if

possible.

fhandle2

 file handle value supplied by the successful response to the associated

kXR_open request that is to be used for the pre-read request. Each

fhandle2 is treated separately allowing pre-reads to occur from multiple

files.

rlen2 binary maximum amount of data that is to be pre-read. The rlen2 should

correspond to the intended amount of data that will be read at offset2 in

the near future.

offset2 binary offset from which the data is to be pre-read. The offset2 should

correspond to the intended offset of data that will be read in the near

future.

dlen binary length of the of the data, data, that was actually read.

data data that was read.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) If more data is requested than the file contains, the total of all dlen’s

should be less than rlen.

3) Reading past the end of file with a valid offset should return a dlen of 0.

4) The fhandle value should be treated as opaque data.

5) Since a read may request more data than the allowable internal buffer size,

the data is sent in fixed-sized segments until the request is satisfied. This

is accomplished using the kXR_oksofar status code. Each subsequent data

segment is transmitted using a {streamid, status, dlen, data} response. The

last segment is indicated by a kXR_ok, if no error occurred.

6) Any status code other than kXR_oksofar indicates the end of

transmission.

7) Sending requests using the same streamid when a kXR_oksofar status

code has been returned may produced unpredictable results. A client

should serialize all requests using the streamid in the presence of partial

results.

 kXR_read

XRootD Protocol Version 4.0.0 Page: 153

8) The kXR_read request allows you to also schedule the pre-reading of data

that you will ask for in the very near future. Pre-reading data may

substantially speed up the execution because data will be available in

memory when it is actually asked for. On the other hand, requesting data

that you will not need will simply cause a general slow-down of the

complete system.

9) The pre-read request is considered only a hint. The system may or may

not honor the pre-read request, depending on the current system load.

10) To schedule a pre-read without actually reading any data, issue a

kXR_read request with rlen and offset set to zero and readahead_list filled

out to reflect what data should be pre-read.

Binary Definitions

Request Modifiers Value Explanation

kXR_read 3013 Read a file

 kXR_readv

XRootD Protocol Version 4.0.0 Page: 155

4.22 kXR_readv Request

Purpose: Read data from one or more open files.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_readv kXR_unt16 status
kXR_char reserved[15] kXR_int32 dlen

kXR_char pathid kXR_char data[dlen]

kXR_int32 alen

 read_list[n]

n = alen/16 with no remainder

read_list
kXR_char fhandle[4]
kXR_int31 rlen

kXR_int64 offset

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

status ending status of this request. Only the following two status codes indicate

a normal ending:

 kXR_ok - All of the data has been transmitted without error.

 kXR_oksofar - Partial data has been transmitted without error;

 additional data should be expected on this stream.

alen binary length of the arguments that follow the request header. These

arguments may include the pathid and read request list, struct read_list.

The maximum allowed value for alen is 16384. This allows up to 1024 read

segments.

pathid pathid returned by kXR_bind. The response data is sent to this path, if

possible.

kXR_readv

XRootD Protocol Version 4.0.0 Page: 156

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request that is to be used for the read request. Each fhandle is

treated separately allowing reads to occur from multiple files.

rlen binary maximum amount of data that is to be read. Less data will be read if

an attempt is made to read past the end of the file.

offset binary offset from which the data is to be read.

dlen binary length of the of the response data, data.

data response data. The response data includes read_list headers preceding the

actual data that was read.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Each read_list element represents a read request. All of the read requests

are aggregated into one or more responses. Read data is always prefixed

by its corresponding read_list element. However, the rlen value in the

element indicates the actual amount of data that was read.

3) The struct read_list is equivalent to struct readahead_list.

4) If an element requests more data than the file contains, the read request

should fail. It is undefined whether the failure should occur before any

bytes are transmitted to the client.

5) The fhandle value should be treated as opaque data.

6) Since a read may request more data than the allowable internal buffer size,

the data is sent in fixed-sized segments until the request is satisfied. This

is accomplished using the kXR_oksofar status code. Each subsequent data

segment is transmitted using a {streamid, status, dlen, data} response. The

last segment is indicated by a kXR_ok, if no error occurred.

7) Any status code other than kXR_oksofar indicates the end of

transmission.

8) Sending requests using the same streamid when a kXR_oksofar status

code has been returned may produced unpredictable results. A client

should serialize all requests using the streamid in the presence of partial

results.

9) The server may return the read elements in any order.

 kXR_readv

XRootD Protocol Version 4.0.0 Page: 157

Binary Definitions

Request Modifiers Value Explanation

kXR_readv 3025 Read file segments

 kXR_rm

XRootD Protocol Version 4.0.0 Page: 159

4.23 kXR_rm Request

Purpose: Remove a file.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_rm kXR_unt16 kXR_ok
kXR_char reserved[16] kXR_int32 0

kXR_int32 plen

kXR_char path[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

plen binary length of the supplied path, path.

path path of the of the file to be removed. The path may be suffixed with CGI

information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

Binary Definitions

Request Modifiers Value Explanation

kXR_rm 3014 Remove a file

kXR_rmdir

XRootD Protocol Version 4.0.0 Page: 160

4.24 kXR_rmdir Request

Purpose: Remove a directory.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_rmdir kXR_unt16 kXR_ok
kXR_char reserved[16] kXR_int32 0

kXR_int32 plen

kXR_char path[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

plen binary length of the supplied path, path.

path path of the of the directory to be removed. The path may be suffixed with

CGI information.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The directory must be empty (i.e., no entries other than “.” And “..”).

Binary Definitions

Request Modifiers Value Explanation

kXR_rmdir 3015 Remove a directory

 kXR_set

XRootD Protocol Version 4.0.0 Page: 161

4.25 kXR_set Request

Purpose: Set server information.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_set kXR_unt16 kXR_ok
kXR_char reserved[15] kXR_int32 0

kXR_char modifier

kXR_int32 dlen

kXR_char data[dlen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

modifier

 set request modifier and should be initialized to zero.

dlen binary length of the supplied value, data.

data value to set.

resp response value to the specific set requested.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Set processing takes a command-like string in the data field. The following

documents valid set arguments.

kXR_set

XRootD Protocol Version 4.0.0 Page: 162

Binary Definitions

Request Modifiers Value Explanation

kXR_set 3018 Set monitoring information

 kXR_set

XRootD Protocol Version 4.0.0 Page: 163

4.25.1 Valid kXR_set Values

appid apmsg

 monitor {off | on} [appid] | info [info]}

Where:

appid apmsg

 includes apmsg in the server’s log. This request is meant to be used to

identify the start and stop if certain application processes for rudimentary

monitoring purposes. Up to 80 characters should be recorded.

monitor

 control monitor settings with respect to the application.

 off - turns off monitoring for the application.

 appid - includes up to 12 characters of application text in the

 monitor record.

 on - turns on monitoring, if allowed by the configuration.

 appid - includes up to 12 characters of application text in the

 monitor record.

info - insert information into the monitoring record, if information

monitoring is active.

 info - is up to 1024 characters of information

Response

 unique four-character identification value that has been assigned to the

info value.

Notes

1) Monitoring is enabled using the xrootd.monitor configuration directive.

When monitoring is not enabled, the monitor set requests are ignored.

2) Use the returned identification value to tag future records in order to

correlate related information.

 kXR_sigver

XRootD Protocol Version 4.0.0 Page: 165

4.26 kXR_sigver Request

Purpose: Provide a signature for the next request.

Request Normal Response
kXR_char streamid[2] None (see notes)
kXR_unt16 kXR_sigver
kXR_unt16 expectrid

kXR_char version

kXR_char flags

kXR_unt64 seqno

char crypto

kXR_char reserved[3]

kXR_int32 dlen

kXR_char Sigdata[dlen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request. The streamid

should be identical to the streamid in the subsequent request.

expectrid

 requestid of the subsequent request.

version

 the version of the signature protocol being used. Currently, there is only

one version so version should be set to zero.

flags request indicators:

 kXR_nodata the data payload is not included in the hash.

seqno a monotonically increasing sequence number. Each kXR_sigver request

should have a sequence number that is greater than a previous sequence

number used on a particular TCP connection (i.e. login session).

crypto the cryptography used to construct te signature:

kXR_rsaKey the rsa key encrypts the hash.

kXR_SHA256 The hash used is SHA-2.

kXR_sigver

XRootD Protocol Version 4.0.0 Page: 166

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

dlen length of the subsequent signature. This is normally an encrypted hash of

the subsequent request.

sigdata

 the signature for the subsequent request.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Only an error reponse is possible to a kXR_sigver request. This request

simply supplies information used to verify that an authenticated client

sent the subsequent request.

3) Only SHA-256 hashes and session key encryption are currently defined as

supported.

4) Encryption should be done using the encryption facilities of the

authentication protocol used.

Binary Definitions

Request Modifiers Value Explanation

kXR_sigver 3029 Present signature for following

request

 crypto

 kXR_rsaKey 0x80 RSA key encrypts the hash

 kXR_SHA256 0x01 SHA-256 used for the hash

 flags

 kXR_nodata 0x01 Data payload is not signed

 kXR_sigver

XRootD Protocol Version 4.0.0 Page: 167

4.26.1 Signing a request

When the response to kXR_protocol indicates that a particular request needs to

be signed, the client should construct a kXR_sigver request and send it

immediately ahead of the request that needs to be signed. The server should

reject any request that should be signed but has been not signed or incorrectly

signed.

A signature consists of a SHA-256 hash of

 an unsigned 64-bit sequence number,

 the request header, and

 the request payload3;

in that exact order. The crypto member of kXR_sigver should indicate

kXR_SHA256 and the kXR_rsakey should not be set.

The client should add one to the sequence number previously used in a

kXR_sigver request on a particular TCP connection (i.e. login session) before

using it in the current rquest. Sequence numbers should be monotonically

increasing on each TCP connection.

Once the hash has been computed, it should be encrypted using the session key

developed by the authentication protocol used during the login authentication

process. If the authentication protocol does not support generic encryption, an

unecrypted hash should be used if the server set the kXR_secOFrce option in the

kXR_protocol response. If the option is not set in this situation the client should

not sign the request.

The kXR_sigver request should be sent immediately before the request that it

signed.

3 When signing a kXR_write or kXR_verifyw request, the data payload should not be included in

the hash and the kXR_nodata option should be set in the kXR_sigver option field.

kXR_sigver

XRootD Protocol Version 4.0.0 Page: 168

4.26.2 Verifying a signed request

When the server receives a kXR_sigver request, it should assume that it is the

signature for the following request. Note that kXR_sigver requests cannot be

signed so a hold depth of one request is sufficient. Once the next request is

received, the fllowing steps should be followed to verify its signature where

sigver refers to the kXR_sigver request and its payload and thereq refers to the

request whose signature is being verified. If a failure occurs at any step, the

request should be rejected with an error sent to the client and the TCP connection

can be closed.

 Verify that sigver.seqno is greater than the previous sigver.seqno the client

used on the TCP connection. The saved value should only be udated if the

signature is successfully verified.

 Verify that sigver.streamid equals thereq.streamid.

 Verify that sigver.expectrid equals thereq.requestid.

 Verify that sigver.version matches the version being used.

 Verify that sigver.crypto specifies SHA-256.

 Verify that sigver.crypto does not specify the use of the rsa key.

 If the hash was encrypted (i.e. the authentication protocol supports genric

encryption) successfully decrypt the hash using the session key via the

authentication protocol used.

 Generate a new hash using the sigver.seqno, thereq, and the thereq

payload4 in that exact order.

 Verify that the new hash matches the decrypted hash.

 Upon success update the sequence number used so that the sequence

number cannot be reused.

4 When verifying a kXR_write or kXR_verifyw request, the data payload should not be included

in the hash (i.e. the kXR_nodata option should be set in the kXR_sigver option field).

 kXR_stat

XRootD Protocol Version 4.0.0 Page: 169

4.27 kXR_stat Request

Purpose: Obtain status information for a path.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_stat kXR_unt16 kXR_ok
kXR_char opts kXR_int32 ilen

kXR_char reserved[11] kXR_char info[ilen]

kXR_char fhandle[4]

kXR_int32 plen

kXR_char path[plen]

Default info: id size flags mtime [ctime atime mode owner group]5\0

kXR_vfs info: nrw frw urw nstg fstg ustg\0

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

opts

 stat processing options:

 kXR_vfs - return virtual file system information for the specified path

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

plen binary length of the supplied path, path. If plen is zero then fhandle should

hold the file handle value supplied by the successful response to the

associated kXR_open request. The fhandle argument is ignored when a

path is present or when kXR_vfs is specified. In the latter case, a path

argument is required.

path path whose status information is to be returned. The path may be suffixed

with CGI information.

5
 Information in brackets is only returned for servers implementing version 4.0.0 of the protocol.

kXR_stat

XRootD Protocol Version 4.0.0 Page: 170

ilen binary length of the information, info, that follows ilen.

Default Response

info information about the requested path. Note that information in brackets is

returned only if the server supports extended stat information as defined

in protocol version 4.0.0 or higher.

id OS-dependent identifier assigned to this entry. Uniqueness is not

guaranteed. The id is numeric and convertible to a 64-bit value.

size decimal size of the data associated with the path whose information is

being returned. The size may represent a number up to 264-1 (i.e., a long

long).

flags identifies the entry’s attributes as a decimal encoded 32-bit string. The

entry should be assumed to be a regular file unless one or more of the

following bits are set.

 kXR_xset - Either an executable file or a searchable directory.

 kXR_isDir - This is a directory.

 kXR_other - This neither a file nor a directory.

 kXR_offline - For files, the file is not online (i.e., on disk).

 kXR_poscpend - The file was created with kXR_posc and has not yet

 been successfully closed.

 kXR_readable - Read access allowed.

 kXR_writable - Write access allowed.

mtime last modification time in Unix time units (i.e., seconds since 00:00:00 UTC,

January 1, 1970).

ctime creation time in Unix time units (i.e., seconds since 00:00:00 UTC, January

1, 1970).

atime last access time in Unix time units (i.e., seconds since 00:00:00 UTC,

January 1, 1970).

mode octal value of the entries mode bits (i.e. permissions and settings). A

leading zero should always appear to indicate this is an octal value.

 kXR_stat

XRootD Protocol Version 4.0.0 Page: 171

owner name of the owner associated with the entry. If the name cannot be

determined, the owner’s numeric identifier should be returned.

group name of the group associated with the entry. If the name cannot be

determined, the group’s numeric identifier should be returned.

Response for kXR_vfs

info location information about the requested path.

nrw number of nodes that can provide read/write space.

frw size, in megabytes, of the largest contiguous area of r/w free space.

urw percent utilization of the partition represented by frw.

nstg number of nodes that can provide staging space.

fstg size, in megabytes, of the largest contiguous area of staging free space.

ustg percent utilization of the partition represented by fstg.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The returned string is compatible to the format returned by the root

method Tsystem::GetPathInfo().

3) kXR_stat requests, without the kXR_vfs option, directed to a redirector

(i.e., load balancer) referring to a non-file object may result in a non-

deterministic response. That is, the response may indicate that the object

does not exist when, in fact, it does exist but is not a file. Future versions

may resolve the differences between redirectors and file servers.

4) kXR_stat - kXR_vfs requests need not specify an existing filesystem

object. The specified path is used as a path prefix in order to filter out

servers and partitions that could not be used to hold objects whose path

starts with the specified path prefix.

5) kXR_stat - kXR_vfs requests directed to a redirector return the space

values based on current conditions and should be treated as

kXR_stat

XRootD Protocol Version 4.0.0 Page: 172

approximations. When the request is directed to an actual server, the

server’s actual space information is returned.

Binary Definitions

Request Modifiers Value Explanation
kXR_stat 3017 Get file information

 opts

 kXR_vfs 0x01 Return file system information

Response flags

 kXR_xset 0x00 00 00 01 Execution/search bit set

 kXR_isDir 0x00 00 00 02 Item is a directory

 kXR_other 0x00 00 00 04 Item neither directory nor file

 kXR_offline 0x00 00 00 08 Item is not online

 kXR_readable 0x00 00 00 10 Item is readable

 kXR_writable 0x00 00 00 20 Item is writable

 kXR_poscpend 0x00 00 00 40 Item is pending a close

 kXR_bkpexist 0x00 00 00 80 Item has a backup

4.27.1 Additional Stat CGI Tokens

The kXR_stat request allows a client to pass CGI information to restrict

information lookup to online space. The information may or may not be acted

upon, depending on the server’s capabilities. CGI information is passed by

suffixing the path with a question mark (?) and then coding the cgi information as

shown below:

path?oss.lcl=1

Example

 /tmp/foo?oss.lcl=1

 kXR_statx

XRootD Protocol Version 4.0.0 Page: 173

4.28 kXR_statx Request

Purpose: Obtain type information for one or more paths. This request is now

deprecated and should not be used.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_statx kXR_unt16 kXR_ok
kXR_char reserved[16] kXR_int32 ilen

kXR_int32 plen kXR_char info[ilen]

kXR_char path[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

plen binary length of the supplied path list, paths.

paths new-line separated path list whose availability information is to be

returned. Each path in paths may be suffixed with CGI information. If a

single path is supplied, it need not end with a new line character (\n).

ilen binary length of the information, info, that follows ilen.

info information about the requested path consisting of a single binary

character flag for each path in paths.

flags identifies the entry’s attributes as a binary character. The entry should be

assumed to be an immediately available regular file unless one or more of

the following bits are set.

 kXR_xset - Either an executable file or a searchable directory.

 kXR_isDir - This is a directory.

 kXR_other - This neither a file nor a directory, or does not exist.

 kXR_offline - For files, the file is not online (i.e., on disk).

kXR_statx

XRootD Protocol Version 4.0.0 Page: 174

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) kXR_statx requests directed to a redirector (i.e., load balancer) referring to

a non-file object may result in a non-deterministic response. That is, the

response may indicate that the object does not exist when, in fact, it does

exist but is not a file. Future versions may resolve the differences between

redirectors and file servers.

Binary Definitions

Request Modifiers Value Explanation
kXR_statx 3022 Get file information

Response flags

 kXR_xset 0x00 00 00 01 Execution/search bit set

 kXR_isDir 0x00 00 00 02 Item is a directory

 kXR_other 0x00 00 00 04 Item neither directory nor file

 kXR_offline 0x00 00 00 08 Item is not online

 kXR_readable 0x00 00 00 10 Item is readable

 kXR_writable 0x00 00 00 20 Item is writable

 kXR_poscpend 0x00 00 00 40 Item is pending a close

 kXR_bkpexist 0x00 00 00 80 Item has a backup

 kXR_sync

XRootD Protocol Version 4.0.0 Page: 175

4.29 kXR_sync Request

Purpose: Commit all pending writes to an open file.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_sync kXR_unt16 kXR_ok
kXR_char fhandle[4] kXR_int32 0

kXR_char reserved[12]

kXR_int32 0

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

Binary Definitions

Request Modifiers Value Explanation

kXR_sync 3016 Synchronize file to disk

 kXR_truncate

XRootD Protocol Version 4.0.0 Page: 177

4.30 kXR_truncate Request

Purpose: Truncate a file to a particular size.

Request (Opened File) Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_truncate kXR_unt16 kXR_ok
kXR_char fhandle[4] kXR_int32 0

kXR_int64 size

kXR_char reserved[4]

kXR_int32 0

Request (Closed File) Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_truncate kXR_unt16 kXR_ok
kXR_char reserved[4] kXR_int32 0

kXR_int64 size

kXR_char reserved[4]

kXR_int32 plen

kXR_char path[plen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request. The fhandle argument is ignored when a path is

present.

size binary size that the file is to have.

plen binary length of the supplied path, path.

path path of the of the file to be truncated. The path may be suffixed with CGI

information.

kXR_truncate

XRootD Protocol Version 4.0.0 Page: 178

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

Binary Definitions

Request Modifiers Value Explanation

kXR_truncate 3028 Truncate a file

 kXR_write

XRootD Protocol Version 4.0.0 Page: 179

4.31 kXR_write Request

Purpose: Write data to an open file.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_write kXR_unt16 kXR_ok
kXR_char fhandle[4] kXR_int32 0

kXR_int64 offset

kXR_char pathid

kXR_char reserved[3]

kXR_int32 dlen

kXR_char data[dlen]

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request.

offset binary offset to which the data is to be written.

pathid pathid returned by kXR_bind. The actual data is read from this path.

reserved

 area reserved for future use and should be initialized to null characters

(i.e., ‘\0’).

dlen binary length of the of the data, data, to be written.

data data to be written.

kXR_write

XRootD Protocol Version 4.0.0 Page: 180

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) The fhandle value should be treated as opaque data.

Binary Definitions

Request Modifiers Value Explanation

kXR_write 3019 Write into a file

 kXR_writev

XRootD Protocol Version 4.0.0 Page: 181

4.32 kXR_writev Request

Purpose: Write data to one or more open files.

Request Normal Response
kXR_char streamid[2] kXR_char streamid[2]
kXR_unt16 kXR_writev kXR_unt16 kXR_ok
kXR_char options kXR_int32 0

kXR_char reserved[15]

kXR_int32 alen

 write_list[n]

n = alen/16 with no remainder

write_list
kXR_char fhandle[4]
kXR_int31 wlen

kXR_int64 offset

Where:

streamid

 binary identifier that is associated with this request stream. This identifier

should be echoed along with any response to the request.

options

 following options or’d together:

 kXR_doSync - perform an fsync() after data is written.

alen binary length of the arguments that follow the request header. The

argument should be a write request list, struct write_list. The maximum

allowed value for alen is 16384. This allows up to 1024 write segments.

fhandle

 file handle value supplied by the successful response to the associated

kXR_open request that is to be used for the write request. Each fhandle is

treated separately allowing writes to occur to multiple files. Note that the

fhandle causing an error is echoed back in an error response.

wlen binary amount of data that is to be written. Elements whose wlen is zero

are ignored.

kXR_writev

XRootD Protocol Version 4.0.0 Page: 182

offset binary offset to which the data is to be writen.

status ending status of this request. A kXR_ok status indicates successful

completion. Any other status code indicates an error and a description

follows.

dlen binary length of the of the error response data that follows. Note that the

first four bytes are the binary filehandle that encountered the error.

msg null terminated message describing the error.

Notes

1) All binary fields are transmitted in network byte order using an explicit

length. The kXR_char and kXR_unt16 data types are treated as unsigned

values. All reserved fields should be initialized to binary zero.

2) Each write_list element represents a write request. All of the write

requests are aggregated into one response.

3) The fhandle value should be treated as opaque data.

4) Data to be written should follow the write_list. The total number of bytes

that follow should equal the sum of all the individual wlen values.

5) The server should process the elements in the order specified.

6) In the presence of the doSync option, an fsync() should be performed

after all the elements have been written to the file corresponding to

fhandle. This may occur at the end of the write_list if no other file handles

appear in the list or when encountering a new fhandle. When a new fhandle

is encountered, an fsync() should be performed for the previous fhandle

before processing the list for the new fhandle.

7) When an error occurs, it is unpredictable how many bytes have actually

been written to any particular file specified in the write_list. Specifically,

elements prior to the error may have been partially written while elements

subsequent to the element causing the error are ignored.

Binary Definitions

Request Modifiers Value Explanation

kXR_writev 3031 Write file segments

 options

 kXR_doSync 0x01 Perform kXR_sync afterwards

 Security Framework

XRootD Protocol Version 4.0.0 Page: 183

5 The Security Framework

The XRootD protocol provides for a generic security framework in which

virtually any security protocol can be used. The XRootD protocol neither

specifies nor mandates that any particular security protocol be used. However,

should a security protocol be implemented, the XRootD protocol specifies how

the security protocol’s data elements are to be framed and how client-server

interactions during the security protocol’s execution are to be handled.

The first two protocol steps that a client does after connecting to a server are:

1. sends the 20-byte handshake, followed by a

2. kXR_login request.

At this point, the server may require that a security protocol be used to

authenticate the client. It is the server that initiates the authentication exchange.

The client can never force an authentication to occur. The server mandates that

authentication occur by responding to the kXR_login request with security

information. This is an implicit action on the server’s behalf.

Authentication is not required when the data length portion of the response to

the kXR_login is exactly 16 bytes6. When the data length is greater than 16 bytes,

the data portion of the response contains what is called a security token. This is

essentially a list of the security protocols that the server can use to establish the

client’s identity along with possible configuration information that is specific to

each protocol.

6 Protocol versions less than 2.4 used a different signifier. Refer to the kXR_login request code

description for detailed information on deprecated protocol versions.

Security Framework

XRootD Protocol Version 4.0.0 Page: 184

The format of the security token is:

ptoken: &P=protid[,protparms][ptoken]

Where:

protid 1- to 7-character protocol name. This name is typically used to locate a

shared library that implements the security protocol.

protparms

optional protocol specific configuration parameters that should be

supplied to the protocol’s initialization routine when it is instantiated. The

comma is required is protparms are present. The comma is optional

otherwise. The protparms may not contain an ampersand (&).

In the reference implementation, the protid is specified by the sec.protocol

configuration directive and protparms can come from the sec.protocol and the

sec.protparm directives. The plug-in code that handles the protocol is then

assumed to reside in libXrdSecprotid.so which is dynamically loaded by

libXrdSec.so which itself is loaded by the client when a security token has been

returned in response to a login. See the “Scalla Security Configuration Reference”

for more information.

Generally, the security token is handled by some class that sequences the

authentication process. Only that class should be aware of the token’s format.

This class is responsible for loading one of the listed protocols and initiating the

authentication sequence as defined by the security protocol. For consistency

among implementations, it is recommended that protocols be considered from

left to right and that protocols be successfully tried until one is found to succeed.

 Security Framework

XRootD Protocol Version 4.0.0 Page: 185

For instance, in the krb5 security protocol, protparms defines the service principal

whose ticket should be obtained and sent back to the server to prove the client’s

identity. The security token would appear as

&P=krb5,srvname

with srvname being the service principal name. If the service ticket should be

forwardable, then the token would be sent as

&P=krb5,srvname,fwd

Each protocol specifies its own protparms requirements. Refer to the “Scalla

Security Configuration Reference” for more information for each available

protocol.

The normal sequence in almost any security protocol is that one side generates

data sends it to the other side that either accepts or rejects the data and may

respond with other data which the receiver may or may not be required to

respond to. This is a generalization of multiple exchanges. The XRootD protocol

handles such exchanges without interpretation; as follows:

1 After the client-side security manager chooses a protocol and successfully

initializes it with the protparms; that protocol should return some data that will

be sent to the server. The data should be sent to the server as a kXR_auth

request. This data is known as credentials.

2 The first eight characters of the initial credentials should contain the null

terminated protocol identifier of the protocol that generated the credentials.

Hence, the actual credential data starts eight bytes into the credential data

packet in the first credential packet sent to the server. Subsequent packet

layout is defined by the security protocol.

3 When the server receives the initial kXR_auth request; it should attempt to use

a protocol handler that matches the protocol identifier contained in the

credentials (i.e., in the first eight bytes). When the protocol handler is created,

the credentials should be passed to its authentication method. If a match

cannot be found or initialization fails, a kXR_error response should be sent.

The connection should remain opened so that the client may try an alternate

protocol without performing a new login. For subsequent kXR_auth requests,

the same protocol used in the successful handling of the initial kXR_auth

request should be used.

Security Framework

XRootD Protocol Version 4.0.0 Page: 186

4 After the credentials are processed by the authentication method; three

possibilities exist:

a) The data is accepted and no more exchanges are needed. In this case, the

response to the kXR_auth request should be a kXR_ok. The client is then

considered to be fully authenticated.

b) The data is not accepted and authentication failed. In this case, a kXR_error

response should be sent with the connection remaining open.

c) Finally, additional information is needed to complete the authentication.

The authentication method supplies the data that data should be sent to the

client who is expected to respond with a kXR_auth request. The data

provided by the authentication method should be used as the body of a

kXR_authmore response.

5 The client’s action for each of the three possible responses is:

a) Authentication exchanges are stopped when kXR_ok is received. The client

is considered to be fully authenticated and may issue other requests.

b) Authentication exchanges are stopped when a kXR_error is received. The

client may declare a fatal error at this point.

c) An authentication exchange should occur when kXR_authmore is

received. The protocol’s get credentials method should be called with the

data in the kXR_authmore response. The method may then supply new

data that should be sent to the server in a new kXR_auth request or

indicate failure. In this processing continues with step 3.

 Security Framework

XRootD Protocol Version 4.0.0 Page: 187

5.1 Framework for Transport Layer Protocols

The XRootD security framework and the protocol elements that support it are

geared to application layer security. Indeed, implementations are highly

discouraged to expose the underlying transport to application code. This is

necessary in order to allow multiple transports to be used in a transparent way.

Unfortunately, certain commonly available security implementations are either

transport based (e.g., ssl) or rely on intimate knowledge of the transport out of

expediency.

Currently, the XRootD protocol elements neither accommodate nor define direct

transport layer interactions between the client and server parts of a security

protocol; though nothing prevents implementations of doing so out of band or

perhaps hijacking the XRootD connection for a limited amount of time.

However, the reference implementation makes it impossible to do either.

That said, the reference implementation does provide a virtualized transport via

a wrapper class called XrdSecTLayer. This class can be used to wrap transport

layer security protocols implementations and carry out what appear to be

transport layer interactions. The wrapper class virtualizes the interactions by

appropriately framing all exchanges within the protocol defined in this

document.

Security Framework

XRootD Protocol Version 4.0.0 Page: 188

5.2 Request Verification

The protocol defines a mechanism to verify that a request came from a

previously authenticated client. This is done using lightweight cryptographic

signing. Signing requirements are completely controlled by the server that the

client communicates with. The server uses the kXR_protocol request to inform

the client of any signing requirements. The client uses the kXR_sigver request to

sign a request when needed. When the server receives a kXR_sigver request it

should use the information in the request to verify that the subsequent request

actually came from an authenticated client. A server should reject any request

where the signature cannot be verified or a request that needs to be signed was

not preceeded by a kXR_sigver request. When a request is reject because it was

improperly signed, the server should also close the connection to the client after

reporting the error to the client.

 Change History

XRootD Protocol Version 4.0.0 Page: 189

6 Document Change History

1 June 2005

 Add kXR_bind and kXR_endsess request codes.

 Explain how a sessid is returned in response to kXR_login.

 Add kXR_open_apnd and kXR_retstat options to kXR_open.

28 July 2005

 Document the administrative interface protocol.

16 Aug 2005

 Document the lsd administrative command.

25 Jan 2006

 Document the cj administrative command.

 Document the lsj administrative command.

 Add kXR_Cancelled subtype error code.

 Add kXR_Qckscan subtype request to kXR_query.

25 Jan 2006

 Document kXR_readv.

 Complete documentation of kXR_bind.

 Redefine the pre-read structure in kXR_read to include a pathid

argument.

 Add a pathid to kXR_write.

5 Dec 2006

 Document kXR_Qconfig subcode of kXR_query.

 Document kXR_unbind.

 Explain ramification of not using kXR_unbind in the kXR_bind

description.

 Clarify kXR_open request with respect kXR_compress and

kXR_retstat.

25 Jan 2007

 Document pio_max variable for kXR_Qconfig sub-request of

kXR_query.

26 Feb 2007

 Change kXR_prepare to reflect that the priority is really a char.

Change History

XRootD Protocol Version 4.0.0 Page: 190

1 Aug 2007

 Document the kXR_verifyw request.

 Document the kXR_replica, kXR_ulterior, and kXR_nowait

options.

26 Sep 2007

 Document the kXR_locate request.

15 Nov 2007

 Document the kXR_nowait option of the kXR_locate request.

 Document the kXR_vfs option of the kXR_stat request.

13 Mar 2008

 Document the kXR_qspace and kXR_qxattr options of the

kXR_query request.

7 Apr 2008

 Document the kXR_truncate request.

12 May 2008

 Correct kXR_Query documentation w.r.t. the subcode location.

 Document the kXR_QVisa variant or kXR_Query.

20 Aug 2008

 Correct kXR_coloc and kXR_fresh options of the kXR_prepare

request.

 Document the kXR_Qopaque and kXR_Qopaquf variants of

kXR_Query.

26 Jan 2009

 Correct description of lsj admin command xml output.

8 Apr 2009

 Document kXR_seqio option of the kXR_open request.

 Add fhandle to the kXR_stat request to allow getting stat

information based on a currently open file.

6 May 2009

 Describe the security framework as related to the protocol.

 Change History

XRootD Protocol Version 4.0.0 Page: 191

2 Jun 2009

 Describe the kXR_posc open flag and the kXR_poscpend stat

response flag.

14 Jul 2009

 Alter description of kXR_query + kXR_QStats to indicate that

other than the basic framing of the information, the actual XML

package is implementation dependent.

9 Dec 2010

 Document missing field, credtype, in the kXR_auth request. This

field was always there but somehow escaped documentation.

Leaving it unset does not change the protocol but also does not

allow the client to switch protocols mid-stream.

14 Jul 2011

 Expand description of information that kXR_protocol may return

when the client optionally specifies its own protocol version

number (new extension).

28 Mar 2012

 Correct diagrams and expand on descriptive text for kXR_query,

kXR_read, kXR_readv, and kXR_set.

 Add missing pathid argument to kXR_readv request.

 Expand on the text describing responses to kXR_redirect.

 Add tpc to the list of configuration variables that may be queried.

21 Jun 2012

 Better explain possible error recovery actions.

 Add optional elements that should have been described:

o zone field in kXR_login

o port field in kXR_prepare

o pathid field in kXR_readv

Change History

XRootD Protocol Version 4.0.0 Page: 192

16 Jul 2013

 Minor corrections on the valid operations table.

 Document the kXR_dstat option of kXR_dirlist.

 Document the implementation dependent kXR_query requests and

add kXR_Qopaqug to the list.

 Add csname, sitename and version to the list of configuration

variables that may be queried.

 Describe full URL redirect responses.

 Document the kXR_fullurl, kXR_multipr, and kXR_readrdok

settings in the kXR_login request.

 Describe how locate can return a hostname response (i.e. the

kXR_prefname option in kXR_locate).

 Describe the kXR_locate kXR_addperrs option.

 Describe optional login tokens.

20 Nov 2013

 Document the kXR_Qconfig “cms” and “role” options.

3 Apr 2014

 Add better explaination on how to recover from server failures.

15 Oct 2014

 Correct type csname should be chksum in query config.

23 Mar 2015

 Document the cid option of kXR_query config.

10 Feb 2016

 Correct kXR_dirlist layout description.

 Document kXR_sigver request.

 Document security reuirement response to kXR_protocol.

 Document extensions to kXR_mv to handle names with embedded

spaces.

8 Jan 2018

 Document kXR_fattr request.

 Document kXR_writev request.

 Document the kXR_query config fattr request.

 Remove documentation for the kXR_query config wan_port and

wan_window request (no longer useful).

 Change History

XRootD Protocol Version 4.0.0 Page: 193

17 Feb 2018

 Specify binary values for all protocol symbols.

 Remove kXR_unbind request code.

 Modify description of kXR_getfile and kXR_putfile.

18 May 2018

 Move local administrative protocol description to a separate

document.

28 May 2018

 Correct layout of the kXR_protocol request.

20 Jun 2018

 Correct description of kXR_close request.

 Remove ambiguities from the kXR_dirlist request description.

 Correct description of kXR_mkdir request regarding making

directory paths.

 Remove ambiguities from the kXR_open request description.

 Correct description of kXR_stat request.

 Indicate kXR_verifyw request is a placeholder.

17 Jul 2018

 Document the ClientFattrRequest::aData option for the

kXR_fattrList request subcode.

 Remove all references to the kXR_unbind request code.

 Add caveats to the kXR_verifyw request code.

17 Jul 2018

 Document missing error codes.

24 Oct 2018

 Describe extended stat information returned by kXR_dirlist,

kXR_open and kXR_stat.

 Describe CGI information in greater detail.

17 Dec 2018

 Describe kXR_protocol modifications hat support TLS,

kXR_getfile, and kXR_putfile.

 Add new error code kXR_TLSRequired.

Change History

XRootD Protocol Version 4.0.0 Page: 194

19 Apr 2019

 Describe kXR_login abilities kXR_hasipv64, kXR_onlyprv4, and

kXR_onlyprv6.

 Document kXR_FileLocked, kXR_NotAuthorized, and

kXR_Unsupported errors as retriable.

19 Apr 2019

 Add kXR_tlsGPF and kXR_ExpGPF flags to the kXR_protocol

request.

27 Jul 2019

 Add kXR_lclfile flag to the kXR_login request.

14 Oct 2019

 Add kXR_chkpoint, kXR_gpfile, kXR_pgread and kXR_pgwrite

request codes.

 Add kXR_anongpf, kXR_supgpf, kXR_suppgrw, and

kXR_supposc flags to kXR_protocol response.

 Add kXR_attn + kXR_asyninfo response combination.

 Remove kXR_admin (now assigned to kXR_fattr), kXR_decrypt

(now assigned to kXR_pgread), kXR_getfile (now assigned to

kXR_gpfile), kXR_putfile (now assigned to kXR_chkpoint), and

kXR_verifyw (now assigned to kXR_pgwrite) request codes.

 Remove kXR_attn subcodes: kXR_asyncab, kXR_asyncav,

kXR_asyncdi, kXR_asyncgo, kXR_asyncrd, kXR_asynunav, and

kXR_asyncwt.

14 Nov 2019

 Redo kXR_gpfile, kXR_pgread and kXR_pgwrite request codes.

14 Jan 2020

 Add missing variables to kXR_query config request: cmsd, start,

tpcdlg, tls_port, vnid, and xrootd.

17 Jan 2020

 Add missing option, kXR_evict, to the kXR_prepare request.

 Document backward compatability requirements for kXR_pgread

and kXR_pgwrite requests.

 Change History

XRootD Protocol Version 4.0.0 Page: 195

2 Apr 2020

 Document the kXR_status response code.

 Rearchitect the kXR_pgread and kXR_pgwrite requests.

 Update error recovery procedures for kXR_noserver and

kXR_SigVerErr errors.

 Substitute kXR_ItExists error code for never used kXR_ChkLenErr

error code and map it to POSIX EEXIST errno.

 Remap kXR_InvalidRequest from EEXIST to EBADRQC errno.

 Provide consistent errno mapping for kXR_ServerError to EFAULT.

 Provide consistent errno mapping for kXR_Unsupported to

ENOTSUP.

 Provide consistent errno mapping for kXR_FSError to ENODEV.

15 Apr 2020

 Document the kXR_AuthFailed error response code.

2 May 2020

 Document the kXR_ExpGPFA and kXR_tlsGPFA values in he

kXR_protocol request and response.

25 Aug 2020

 Correct size of crc32 in kXR_pgread and kXR_pgwrite.

8 Oct 2020

 Fully specify the kXR_chkpoint request.

 Add the kXR_Conflict and kXR_Impossible error codes.

18 Oct 2020

 Document the kXR_collapseRedir and kXR_recoverWrts flags in

the kXR_redirect response.

 Document the kXR_redirflags ability flag in the kXR_login request.

6 Jan 2021

 Document the kXR_dcksm flag in the kXR_dirlist request.

16 Mar 2021

 Rewrite the kXR_pgread and kXR_pgwrite requests.

13 Jun 2021

 Document the kXR_ReqTimedOut error code. Minor corrections to

kXR_chkpoint request.

