System Monitoring Reference 31-March-2022 Release 5.5.0+ Andrew Hanushevsky $@2003\mbox{-}2022$ by the Board of Trustees of the Leland Stanford, Jr., University All Rights Reserved Produced under contract DE-AC02-76-SFO0515 with the Department of Energy This code is available under a GNU Lesser General Public license. For LGPL terms and conditions see http://www.gnu.org/licenses/ | 1 | Monito | oring | 7 | |---|--------------|--|----| | 2 | Summ | ary Monitoring Data Format | 9 | | | | empxstats Command | | | | | uick Guide Example | | | | | nmary Data | | | | | ıff Summary Data | | | | 2.2.2 Ca | ache Summary Data | 13 | | | 2.2.3 Cr | ms Protocol Summary Data | 15 | | | 2.2.3.1 | Cmsc Protocol Summary Data | 15 | | | 2.2.3.2 | Cmsm Protocol Summary Data | 16 | | | 2.2.3.3 | Cmss Protocol Summary Data | 17 | | | 2.2.4 In | fo Summary Data | 18 | | | 2.2.5 Li | nk Summary Data | 18 | | | 2.2.6 Of | fs Summary Data | 19 | | | | ss Summary Data | | | | | oll Summary Data | | | | | oc Summary Data | | | | | Pss Summary Data | | | | | Sched Summary Data | | | | | Sgen Summary Data | | | _ | | Xrootd Protocol Summary Data | | | 3 | | ed Monitoring Data Format | | | | | ent Monitoring Overview | | | | 3.2 Con | nmon Packet Header | 30 | | | | lternative Packet Header (g-Stream) | | | | 3.3 Mon | nitor Map Message Format | 33 | | | 3.3.1 M | essage Info Field | 35 | | | 3.3.2 Al | lternative Monitor Map Messages (g-Stream) | 38 | | | | e f-stream (fstat) | | | | | isc Event | | | | - | pen Event | | | | | ose Event | | | | | r Event | | | | 3.5 The | e g-stream (ccm, pfc, tcpmon and tpc) | 49 | | | | lternative g-Stream Headers | | | | | PC g-Stream | | | | | er-stream (redir) | | | | 3.6.1 U1 | nderstanding Multiple Redirection Streams | 56 | | 4 | D_0 | cument Change 1 | 11Story | 63 | |---|-------|-----------------------|--------------|-----| | 1 | Da | cum ant Changa I | Lictory | 6.5 | | | 3.7.1 | 1 Monitor Trace Messa | ge Format | 58 | | | 3.7 | The t-stream (files, | io, and iov) | 52 | | | | | | | **XRootD** provides two types of monitoring: 1) summary monitoring and 2) detail monitoring. Summary monitoring is controlled by the **xrd.report** directive while detail monitoring is controlled by the **xrootd.monitor** and **xrootd.mongstream** directives. All of these directives are documented in the "**Xrd/Xrootd Configuration Reference**". In order to provide real-time information with minimal impact, monitor data is sent as **UDP** messages. Each directive specifies what information is to be sent as well as the destinations. Because **UDP** is used, information is sent whether or not the receiving host is listening for the records. You should not activate monitoring if you do not activate the receiving end, as well. Below is a graphic showing all of the available monitoring streams and their intended destinations. Summary monitoring is suitable for providing a broad over-view of an **XRootD** cluster. The information is typically rendered by agents such as Ganglia or Mona Lisa, among others. Detail monitoring is suitable for deep analysis of access and usage patterns of an **XRootD** cluster. Since such information is necessarily complex, specialized renderers must be used. The **XRootD** monitoring architecture is highly suited for publish-subscribe environments; as shown below and typified by Apache Kafka or Spark. Because **XRootD** monitoring data uses a common compact format it is easy to collect and cross-reference. A collector would reconstruct the streams to contain relevant data for each type of subscriber in the desired format (e.g. JSON). A collector could also push preset data streams to known renderers like dash boards. The following sections describe the data formats of each monitoring stream. # 2 Summary Monitoring Data Format The **xrd.report** directive specifies the parameters as well as the hosts that are to receive the summary information, Summary records are sent as UDP datagrams. Therefore, the information is sent whether or not the receiving host is enabled for the records. Summary information is formatted as an XML record and is described in the following sections. When dealing with XML formats you must: - 1. Be insensitive to the XML tag order within a phrase, and - 2. Ignore undocumented tags. Normally, multiple xrootd servers transmit summary information to a collector (i.e., a process accepting messages on a specific port). In order to simplify the processing of summary information, a UDP multiplexing and XML parsing program, called **mpxstats**, is provided. This program accepts data on a selectable port, multiplexes received the datagrams into a single stream, and optionally parses the XML into either a CGI format or a flat key-value format. The output is sent to standard out for further processing. #### 2.1 The mpxstats Command ``` mpxstats [-f {cgi | flat | xml}] -p port [-s] ``` #### **Function** Multiplex UDP datagrams into a single stream and optionally parse the data. #### **Options & Parameters** - -f Parses the received data into the specified format: - cgi Computer Gateway Interface - flat Simple key word-value format - **xml** Original format (i.e., input is *not* parsed) **-p** *port* is the port to use for accepting UDP datagrams. -s includes the actual sender in **cgi** and **flat** format output. #### **Defaults** By default, xml output format is used. The UDP port *must* be specified. #### **Notes** - 1) The **cgi** and **flat** formats are based on the input the **xml** tags, without interpretation. Therefore, un-described tags may appear in the output and should be ignored. - 2) The **cgi** format generally produces: "var=value[&var=value[. . .]]\n". Each var is based on an **xml** format item and the value is the item's associated value. One new-line terminated string is generated for each UDP packet. - 3) The **cgi** format is suitable for input to an **XrdOucEnv** class object which converts **cgi** strings into environment variable store. The class provides a simple value look-up scheme; much like getenv(). - 4) The **flat** format generally produces: "var value\n[var value\n[...]]\n". Each var is based on an **xml** format item and the value is the item's associated value. Each var-value pair is a new-line terminated string. A null line is generated at the end for each UDP packet. - 5) The flat format is suitable for input to Perl and Python scripts and can easily be used to construct *var-value* hashes for further processing. - 6) The **mpxstats** program writes its output to standard out. Error messages are written to standard error. #### 2.1.1 Quick Guide Example This picture illustrates the general scheme most installations use to gather summary statistics and insert them into their monitoring framework. Here a number of xrootd servers send their statistics to a collector machine listening at port 3333. The collector merges all of the data streams and sends a selection of the desired data to the monitoring infrastructure. To implement such a scheme, follow these steps: 1. In the configuration file for each xrootd insert the following directive # if exec xrootd xrd.report collector_host_name:3333 every 15 all -poll fi Where *collector_host_name* is the name of the machine that collects and formats the summary data. The **if/fi** construct only allows xrootd to report statistics as the **cmsd** does not currently report meaningful statistic. 2. Start the data multiplexing program and feed its output to program or script that can inject the data into the monitoring infrastructure. For instance, #### mpxstats -f flat -p 3333 | send2monitor The **send2monitor** script is, of course, installation dependent. Below is a simple **perl** script that reads the statistical data from standard in, places it a hash, and then calls a subroutine that can use the values in the hash to feed Ganglia. send2monitor: Place Data In a Hash Indexed By the Data's Variable Name #### 2.2 Summary Data | Variable | Type | S | Explanation Of Value | | | |----------|-------|----------|---|--|--| | host | char | | The name of the host that sent the UDP packet.* | | | | ins | char | | The instance name specified via – n option (anon if none). | | | | pgm | char | | The name of the program. | | | | pid | int | | The program's process ID. | | | | site | char | | The specified site name. | | | | src | char | | Host and port reporting data, specified as "hostname:port" | | | | tod | int64 | ↑ | Unix time when statistics gathering started. | | | | tos | int64 | 1 | Unix time when the program was started. | | | | ver | char | | The version name of the server's code. | | | #### 2.2.1 Buff Summary Data | Variable | Type | S | Explanation Of Value | | |------------|-------|-------------------|------------------------------------|--| | buff.adj | int | ↑ | Adjustments to the buffer profile. | | | buff.buffs | int | \leftrightarrow | Number of allocated buffers. | | | buff.mem | int64 | \leftrightarrow | Bytes allocated to buffers. | | | buff.reqs | int | 1 | Requests for a buffer. | | #### 2.2.2 Cache Summary Data ^{*} This information is provided by the Operating System's recvfrom() function, not the data stream. It is present ``` <stats id="cache" type="type"> cprerd> <in>int64</in><hits>int64</hits><miss>int64</miss> d> < rd > <in>int64</in><out>int64</out> <hits>int64></hits><miss>int64</miss> </rd> <pass>int64<cnt>int64</cnt></pass> <wr><out>int64</out><updt>int64/wr> <saved>int64</saved><purge>int64</purge> <files> <opened>int64</opened><closed>int64</closed> <new>int64</new> </files> <store><size>int64</size><used>int64</used> <min>int64</min><max>int64</max> </store> <mem> <size>int64</size><used>int64</used><wq>int64</wq> </mem> <opcl> <odefer>int64</odefer><defero>int64</defero>
<cdefer>int64</cdefer><clost>int64</clost> </opcl> </stats> ``` | Variable | Type | S | Explanation Of Value | |--------------|-------|-------------------|---| | type | char | | Type of cache (i.e. pfc or rmc) | | prerd.in int | | 1 | Bytes read into the cache via pre-read mechanism. | | prerd.hits | int | 1 | Number of pre-read pages that were wanted | | prerd.miss | int64 | 1 | Number of pre-read pages that were not wanted. | | rd.in | int | 1 | Bytes read into the cache via demand. | | rd.out | | ↑ | Bytes delivered out of the cache to satisfy requests. | | rd.hits | | 1 | Number of times wanted data was in the cache. | | rd.miss | | 1 | Number of times wanted data was not in the cache. | | pass | | 1 | Number of bytes read but not cached. | | pass.cnt | | 1 | Number of times requested data by passed the cache. | | wr.out | | ↑ | Bytes written out of the cache. | | wr.updt | | 1 | Bytes written into the cache. | | saved | | 1 | Bytes written from memory to storage. | | purge | | 1 | Bytes purged from storage. | | files.opened | | ↑ | Number of cache files opened. | | files.closed | | 1 | Number f cache files closed. | | files.new | | 1 | Number of cache files that were created. | | store.size | | | The size of cache storage in bytes. | | store.used | | | Storage bytes in use. | | store.min | | \ | The minimum number of storage bytes in use. | | store.max | | 1 | The maximum number of storage bytes in use. | | mem.size | | | The size of the cache memory in bytes. | | mem.used | | | Memory bytes in use. | | mem.wq | | \leftrightarrow | Bytes currently in the memory write queue. | | opcl.odefer | | 1 | Number of deferred open requests. | | opcl.defero | | 1 | Number deferred opens that were actually opened. | | opcl.cdefer | | 1 | Number of deferred close requests. | | Opcl.clost | | 1 | Number of uncompleted close requests. | #### 2.2.3 Cms Protocol Summary Data The cms protocol has three distinct sub-protocols: - Client identified by the tag id cmsc, - Manager identified by the tag id cmsm, and - Server identified by the tag id **cmss**. Each provides different summary statistics as each sub-protocol performs different actions. Even within each sub-protocol, the reporting entity may have a distinct role that also affects which information is actually reported. The following table lists the role identifiers (role ID) reported in the "role" tag. | Role ID | Corresponding role directive | Role ID | Corresponding role directive | |---------|------------------------------|---------|------------------------------| | E | peer | PR | proxy supervisor | | EM | peer manager | PS | proxy server | | М | manager | R | supervisor | | MM | meta manager | S | server | | PM | proxy manager | | | #### 2.2.3.1 Cmsc Protocol Summary Data | Variable | Type | S | Explanation Of Value | |-----------|------|---|---| | cmsc.role | char | | Role identification for reporter (see table above). | #### 2.2.3.2 Cmsm Protocol Summary Data ``` <stats id="cmsm"> <role>chars</role> <sel><t>int64</t><r>int64</r><w>int64</w></sel> <node>int <stats id="i"> <host>chars</host> <role>chars<run>chars <ref><r>int</r><w>int</w></ref> [<shr>int<use>int</use></shr>] </stats> • • • </node> [<frq> <add>int64<pb>int64</pb></add> <rsp>int64<m>int64</m></rsp> <lf>int64</lf><ls>int64</ls> <rf>int64</rf><rs>int64</rs> </frq>] </stats> ``` | Variable | Type | S | Explanation Of Value | |-----------------------|-------|-------------------|--| | cmsm.role | char | | Role identification for reporter (see table | | | | | above). | | cmsm.sel.t | int64 | ← | Number of node selections. | | cmsm.sel.r | int64 | ↑ | Number of node selections for read access. | | cmsm.sel.w | int64 | 1 | Number of node selections for write access. | | cmsm.node | int | \leftrightarrow | Number of subsequent node stats ($0 \le i \le n$). | | cmsm.node.i.host | char | | DNS name of host or IPV6 address. | | cmsm.node.i.role char | | | Role identification for host (see table above). | | cmsm.node.i.run | char | | Run status as a sequence of characters: | | | | | \mathbf{a} – active \mathbf{d} – disabled \mathbf{n} - nostaging | | | | | \mathbf{o} – offline \mathbf{w} - writable | | cmsm.node.i.ref.r | int | ↑ | Number of times selected for read access. | | cmsm.node.i.ref.w | int | 1 | Number of times selected for write access. | | cmsm.node.i.shr int | | ↑ | Desired share of requests [†] , if so configured. | | cmsm.node.i.shr.use | int64 | ↑ | Number of times share was exhausted. | [†] This tag is only present for MM roles (meta manager) and if requested via the **cms.repstats** directive. | Variable Type S | | S | Explanation Of Value | |-----------------|---------|---|---| | cmsm.frq.add | int64 | 1 | Additions to the fast response queue (frq) ‡. | | cmsm.frq.add.d | int64 | 1 | Additions that were duplicates. | | cmsm.frq.rsp | int64 | 1 | Responses received. | | cmsm.frq.rsp.m | int64 | 1 | Multiple responses were fielded. | | cmsm.frq.lf | int64 ↑ | | Lookups dispatched that required no wait. | | cmsm.frq.ls | int64 | 1 | Lookups dispatched that required a full wait. | | cmsm.frq.rf | int64 | 1 | Redirects dispatched that required no wait. | | cmsm.frq.rs | int64 | 1 | Redirects dispatched that required a full wait. | # 2.2.3.3 Cmss Protocol Summary Data | Variable | Type | S | Explanation Of Value | |-----------|------|---|---| | cmss.role | char | | Role identification for reporter (see table above). | _ [‡] This tag is only present if requested via the **cms.repstats** directive. #### 2.2.4 Info Summary Data | Variable | Type | S | Explanation Of Value [§] | | |-----------|------|----------|--|--| | info.host | char | | Hostname that generated the information. | | | info.name | char | | Instance name specified via -n option (anon if none). | | | info.port | int | + | Port used for server requests. | | #### 2.2.5 Link Summary Data | Variable | Type | S | Explanation Of Value | | |------------|-------|-------------------|---|--| | link.ctime | int64 | 1 | Cumulative number of connect seconds. ctime/tot gives | | | | | | the average session time per connection. | | | link.in | int64 | 1 | Bytes received. | | | link.maxn | int | 1 | Maximum number of simultaneous connections. | | | link.num | int | \leftrightarrow | Current connections. | | | link.out | int64 | 1 | Bytes sent. | | | link.sfps | int | 1 | Partial sendfile() operations. | | | link.stall | int | 1 | Number of times partial data was received. | | | link.tmo | int | 1 | Read request timeouts. | | | link.tot | int64 | 1 | Connections since start-up. | | . [§] The info tag is deprecated and normally does not get included as this information is present in the header tag. It is documented here for backwards compatibility. #### 2.2.6 Ofs Summary Data | Variable | Type | S | Explanation Of Value | | |--------------|------|-------------------|--|--| | ofs.bxq | int | ← | Background tasks processed. | | | ofs.dly | int | ↑ | Delays imposed. | | | ofs.err | int | ↑ | Errors encountered. | | | ofs.han | int | \leftrightarrow | Active file handles. | | | ofs.opp | int | ‡ | Files open in read/write POSC mode. | | | ofs.opr | int | ‡ | Files open in read-mode. | | | ofs.opw | int | ‡ | Files open in read/write mode. | | | ofs.rdr | int | ← | Redirects processed. | | | ofs.rep | int | ← | Background replies processed. | | | ofs.role | char | | Reporter's role (e.g., manager, server, etc). | | | ofs.ser | int | 1 | Events received that indicated failure. | | | ofs.sok | int | 1 | Events received that indicated success. | | | ofs.ups | int | ← | Number of times a POSC mode file was un-persisted. | | | ofs.tpc.grnt | int | ↑ | Number of third party copies allowed. | | | ofs.tpc.deny | int | 1 | Number of third party copies denied. | | | ofs.tpc.err | int | ↑ | Number of third party copies that failed. | | | ofs.tpc.exp | int | ↑ | Number of third party copies whose auth expired. | | #### 2.2.7 Oss Summary Data ``` <stats id="oss"> <paths>int <stats id="i"> <lp>"chars"</lp><rp>"chars"</rp> <tot>int64</tot><free>int64</free> <ino>int64</ino><ifr> int64</ifr> </stats> • • • </paths> <space>int <stats id="i"> <name>chars</name> <tot>int64</tot><free>int64</free> <maxf>int64</maxf><fsn>int</fsn> <usg>int64</usg>[<qta>int64</qta>] </stats> ••• </space> </stats> ``` | Variable | Type | S | Explanation Of Value | |------------------|-------|-------------------|---| | oss.paths | int | \leftrightarrow | Number of subsequent paths stats ($0 \le i \le n$). | | oss.paths.i.free | int64 | \leftrightarrow | Kilobytes available. | | oss.paths.i.ifr | int64 | \leftrightarrow | Number of free inodes. | | oss.paths.i.ino | int64 | \leftrightarrow | Number of inodes. | | oss.paths.i.lp | char | | The minimally reduced logical file system path. | | oss.paths.i.rp | char | | The minimally reduced real file system path. | | oss.paths.i.tot | int64 | \leftrightarrow | Kilobytes allocated. | | oss.space | int | | Number of subsequent space stats ($0 \le i \le n$). | | oss.space.i.free | int64 | \leftrightarrow | Kilobytes available. | | oss.space.i.fsn | int | \leftrightarrow | Number of file system extents. | | oss.space.i.maxf | int64 | \leftrightarrow | Max kilobytes available in a filesystem extent. | | oss.space.i.name | char | | Name for the space. | |
oss.space.i.qta | int64 | \leftrightarrow | Total space quota**, if supported. | | oss.space.i.tot | int64 | \leftrightarrow | Kilobytes allocated. | | oss.space.i.usg | int64 | \leftrightarrow | Usage associated with space name, if supported. | $[\]ensuremath{^{**}}$ This tag may be missing if quotas have not been configured. #### 2.2.8 Poll Summary Data | Variable | Type | S | Explanation Of Value | | |----------|------|-------------------|--|--| | poll.att | int | \leftrightarrow | File descriptors attached for polling. | | | poll.en | int | 1 | Poll enable operations. | | | poll.ev | int | 1 | Polling events. | | | poll.int | int | 1 | Unsolicited polling events. | | # 2.2.9 Proc Summary Data | Variable | Type | S | Explanation Of Values Reported by getrusage() | | |------------|------|-------------------|---|--| | proc.sys.s | int | ← | Seconds of system-time. | | | proc.sys.u | int | \leftrightarrow | Microseconds of system-time. | | | proc.usr.s | int | 1 | Seconds of user-time. | | | proc.usr.u | int | \leftrightarrow | Microseconds of user-time. | | # 2.2.10 Pss Summary Data | Variable | Type | S | Explanation Of Value | | |----------------|------|----------|---------------------------------|--| | pss.open | int | 1 | ↑ Number of remotes file opens. | | | pss.open.errs | int | ↑ | Number of opens that failed. | | | pss.close | int | 1 | Number of remote file closes. | | | pss.close.errs | int | ↑ | Number of closes that failed. | | #### 2.2.11 Sched Summary Data | Variable | Type | S | Explanation Of Value | | |---------------|------|----------|--|--| | sched.idle | int | ‡ | Number of scheduler threads waiting for work. | | | sched.inq | int | \$ | Number of jobs that are currently in the run-queue. ++ | | | sched.jobs | int | ↑ | Jobs requiring a thread. | | | sched.maxinq | int | 1 | Longest run-queue length | | | sched.tcr | int | ↑ | Thread creations. | | | sched.tde | int | ↑ | Thread destructions. | | | sched.threads | int | ↑ | Number of current scheduler threads. | | | sched.tlimr | int | ↑ | Number of times the thread limit was reached. | | # 2.2.12 Sgen Summary Data <stats id="sgen"><as>0</as><et>0</et><toe>toe</toe></stats> | Variable | Type | S | Explanation Of Value | | |----------|-------|-------------------|--|--| | sgen.as | int | | One if data was asynchronously gathered, 0 otherwise. | | | sgen.et | int64 | \leftrightarrow | Elapsed milliseconds from start to completion of statistics. | | | sgen.toe | int64 | 1 | Unix time when statistics gathering ended. | | $^{^{\}dagger\dagger}$ The number of active requests is represented by (sched.threads – sched.idle + sched.inq). #### 2.2.13 Xrootd Protocol Summary Data ``` <stats id="xrootd"> <num>int</num> <ops> <open>int</open><rf>int</rf><rd>int64</rd> <pr><int64</pr><rv>int64</rv><rs>int64</rv></rs> <wr>int64</wr><sync>int</sync> <getf>int</petf><putf>int</putf><misc>int</misc> </ops> <aio> <num>int64</num><max>int</max><rej>int64</rej> </aio> <err>int<rdr>int64</rdr><dly>int</dly> <lgn> <num>int</num><af>int</af><au>int</au><ua>int</ua> </lgn> </stats> ``` | Variable | Type | S | Explanation Of Value | |-----------------|-------|----------|--| | xrootd.num | int | ↑ | Number of times the protocol was selected. | | xrootd.aio.max | int | ↑ | Maximum simultaneous async I/O requests. | | xrootd.aio.num | int64 | → | Async I/O requests processed. | | xrootd.aio.rej | int64 | ↑ | Async I/O requests converted to sync I/O. | | xrootd.dly | int | ↑ | Number of requests that ended with a delay. | | xrootd.err | int | ← | Number of requests that ended with an error. | | xrootd.ops.getf | int | → | Getfile requests. | | xrootd.ops.misc | int | ↑ | Number of "other" requests. | | xrootd.ops.open | int | ↑ | File open requests. | | xrootd.ops.pr | int64 | ↑ | Pre-read requests. | | xrootd.ops.putf | int | → | Putfile requests. | | xrootd.ops.rf | int | 1 | Cache refresh requests. | | xrootd.ops.rd | int64 | ↑ | Read requests. | | xrootd.ops.rs | int64 | 1 | Readv segments. | | xrootd.ops.rv | int64 | 1 | Readv requests. | | xrootd.ops.sync | int | 1 | Sync requests. | | xrootd.ops.wr | int64 | 1 | Write requests. | | Variable | Type | S | Explanation Of Value | | |----------------|-------|----------|--|--| | xrootd.rdr | int64 | ↑ | Number of requests that were redirected. | | | xrootd.lgn.num | int | 1 | Number of login attempts. | | | xrootd.lgn.af | int | ↑ | Number of authentication failures. | | | xrootd.lgn.au | int | 1 | Number of successful authenticated logins. | | | xrootd.lgn.ua | int | 1 | Number of successful un-authentication logins. | | # 3 Detailed Monitoring Data Format The **xrootd.monitor** directive specifies the monitor parameters as well as the hosts that are to receive the monitoring information. A similar directive, **frm.all.monitor** provides monitor parameters for the **F**ile **R**esidency **M**anager (**FRM**). Monitor records are sent as **UDP** datagrams. Therefore, the information is sent whether or not the receiving host is enabled for the records. Four main streams available from **xrootd** and are enabled using the **xrootd.monitor** and **xrootd.mongstream** directives, as follows: - **f**-stream summarizes file access events; enabled by the **fstat** event option. - **g-**stream summarizes various plug-in events; enabled by the **ccm**, **pfc**, and **tcpmon** event options. - r-stream details client redirections; enabled by the redir event option. - **t**-stream details file access events; enabled by the **files**, **io**, and **iov** event options. The above three streams are continuous in that multiple events are contain in each information **UDP** packet. Other **XRootD** streams contain a single event per packet and provide information necessary to relate the events contained in the continuous streams. These are: - =-stream provides server identification; enabled by the **ident** option. - **d**-stream provides the identifier assigned to a user and file path; enabled by the **files** option. - i-stream provides client supplied information; enabled by the info option. - u-stream provides client login information; enabled by the auth and user options Finally, there are two streams available from the File Residency Manager (FRM) and are enabled using the frm.monitor directive. These are: - **p**-stream provides information about file purge events from; enabled by the **purge** option. - **x**-stream provides information on files copied into and out of the server; enabled by the **migr** and **stage** options. Each stream is independent in that event types are not mixed together in any **UDP** packet. That is, a **d**- stream only contains events related to that stream. Streams other than **f**-, **g**-, **r**-, and **t**-streams are grouped under the rubric of map messages. They contain only one event per **UDP** packet and are described in the "Monitor Map Message Format" section. The **f**-, **r**-, and **t**-streams are sufficiently complicated to deserve separate treatment. #### 3.1 Event Monitoring Overview - i. When the server starts up it sends a identification message to each stream receiver (i.e. '=' record). This message may be periodically repeated, depending on the specified configuration. - ii. Each time a client logs in or authenticates, the system assigns the client a unique dictionary ID (**dictid**). The mapping between the dictionary ID and the client generates a separate monitor record that is sent to the destination host. This **dictid** is used in subsequent records that refer to the client. This only occurs if the **auth** or **user** option is specified on the **xrootd.monitor** directive. - iii. Each time a client opens a particular file, the system assigns the client/file-path combination a unique dictionary ID (dictid). The mapping between the dictionary ID and the client/file-path pair generates a separate monitor record that is sent to the destination host. This dictid is used in subsequent records that refer to the client's use of the particular file. This only occurs if the files option is specified on the xrootd.monitor directive. It is meant to expedite translating the t-stream into useful information. The fstat lfn option provides a similar feature but includes the information directly in the f-stream. It is rare to enable the "t" and f-streams together. - iv. Each type of **g-s**tream can also generate "**d**" and "**i**" mapping records. The mapping records are sent to the receiving host assigned to the particular **g-s**tream. - v. Each time a client injects application information into the monitoring stream, the system assigns the information a unique dictionary ID (dictid). The mapping between the dictionary ID and the client/application pair generates a separate monitor record that is sent to the destination host. The dictid is also returned to the client to help cross reference client activities with the server. This occurs only when the info option is specified on the xrootd.monitor directive. - vi. The **dictid** is used to compress out redundant information. Every event that is associated with a particular mapping uses the **dictid** for that mapping in the actual monitoring stream. Thus, it is critical for the receiver to maintain the mapping. - vii. Monitor records are formatted as structured binary records. All numeric fields within the record are sent in network byte order. However, it is possible to specify alternate non-binary formats for **g-s**treams as these streams are generated by plug-ins which may or may not be part
of the **XRootD** core. See the **xrootd.mongstream** directive for additional information as well as **g-s**treams details in this document. - viii. Each datagram is self-consistent. That is, information is never logically split across data-grams. Mapping requests are always fully contained within a datagram. The **f** and **t-s**tream datagrams are always bracketed by window timing marks. - ix. The **r-s**tream (redirect events)) contain only a single timing mark, ostensibly to supply the server's identification. However, each event is time stamped with a resolution equal to the timing window. - x. Definitions of the structures and symbols described in the following sections can be found in the "XrdXrootdMonData.hh" file. #### 3.2 Common Packet Header The following figure describes the common header in each UDP packet sent by **xrootd** or the **FRM** daemon. Header for Each Monitor Message Data-gram Actual information structures follow the header in the same data-gram. The code identifies the stream, as follows: - = server identification sent by **xrootd** or the **FRM** - **d dictid** of a user/path combination (**xrootd** only) - **f** file access events (**xrootd** only) - **g** general events such as file cache information (**xrootd** only) - i dictid of a user/information combination (xrootd only) - p file purge event (**FRM** only) - r client redirect events (**xrootd** only) - t a file or I/O request trace (**xrootd** only) - u dictid of the user login name and authentication (xrootd only) - x file transfer event (**FRM** only) The pseq variable is an ascending, wrapping, packet sequence number, whose value ranges from 0 to 255. This provides a gross mechanism to order packets. I/O event timing marks and file and redirect time stamps within the packet provide more accurate information. The plen variable contains the packet's length. This value can be used to verify that the system's reported length equals the intended length. The stod, defined as Unix time, is the time when the server was started. Thus, each stod/dictid and stod/hostid combination is unique across all time. All binary information in a packet is formatted in network byte order and must be converted to host order in order to be meaningful. #### 3.2.1 Alternative Packet Header (g-Stream) As mentioned earlier, **g-s**treams can request that the packet header be sent as a **CGI** query string or a **JSON** object. Both are text-only formats. Minimally, the packet always starts with the information shown below: ``` CGI: dflthdr[srchdr]... dflthdr: code=code&pseq=pseq&stod=stod&sid=sid sitehdr | hosthdr | insthdr | fullhdr srchdr: sitehdr: &src.site=sname hosthdr: sitehdr&src.host=hname insthdr: hosthdr&src.port=port&src.inst=iname fullhdr: insthdr&src.pgm=pname&src.ver=ver JSON: {dflthdr[,src{srchdr}]...} dflthdr: "code":"code", "pseq":pseq, "stod":stod, "sid":sid sitehdr | hosthdr | insthdr | fullhdr srchdr: sitehdr: "site":"sname" hosthdr: sitehdr,"host":"hname" insthdr: hosthdr,"port":port, "inst":"iname" fullhdr: insthdr,"pqm":"pname","ver":"ver" ``` #### Where: ``` srchdr lists the attributes of the server producing the message. The list of included attributes is configurable and options correspond to the tag names. The srchdr is optional in most cases. When it exists is contains one or more of the following: sname site name (sitehdr, hosthdr, insthdr, or fullhdr option). hname host name or IP address (hosthdr, insthdr, or fullhdr option). port port number (insthdr or fullhdr option). iname instance name (insthdr or fullhdr option). pname program name (fullhdr option). ver version string (fullhdr option). ``` #### **Notes** - 1) Additional data may be contained in the packet depending on its code, as indicated by the triple dot, and is described in each relevant "code" section. - 2) The server's fingerprint is a **SHA3-512** digest of the server's site name, host name, port number, instance name, and program name. The digest is convoluted with a **CRC32C** checksum of the same information to produce a practically unique 48-bit number. Hence, *sid* is for **S**erver **ID** and can be used as a shorthand to cross reference monitoring records with a particular server. The details of the server are specified in the "=" map record and some or all of the information may also be contained in other **g**-**s**tream records, depending on the configuration. #### 3.3 Monitor Map Message Format A map message '=', ' \mathbf{d}' , ' \mathbf{i}' , ' \mathbf{p}' , ' \mathbf{u}' , 'U', or ' \mathbf{x}' in **hdr.code** is generated when a client: - user logs in (type 'u'), - user associated experiment and activity (type 'U'), - purges a file (type 'p'), - transfers a file (type 'x'), - opens a file (type 'd'), and - associates information with the session (type 'i'). For each record other than '=', 'p' and 'x', xrootd generates a unique dictionary ID and assigns it to the user/appinfo, user/authinfo, user/eainfo, and user/path combinations. This identifier is called a **dictid**. The **MonMap** record describes this mapping. It starts with a standard header. Following the header is the binary dictionary ID, **dictid**. This ID is unique within the server's boot-session. That is, every time the server is restarted, the **dictid** value is reset to zero. For '=', 'p' and 'x' records, the **dictid** is always zero. In order to maintain unique **dictid**'s across multiple servers so that the **dictid** can be used as a database key, you must combine the **dictid** with the sending server's host name or IP address, port number or instance name (if multiple servers are running on the same host), and boot time. The **dictid** is referenced in the continuous streams (i.e. **f**, **g**, **r**, and **t**) to avoid repeating rather lengthy information in each event record. Therefore, it is necessary to collect this information in order to report events relative to specific file names and users. Since **UDP** packets may arrive out of order it is possible to receive a map record with a **dictid** that was used in a previous packet. To avoid this problem buffer a small number of packets and order them by packet sequence number before processing. Alternatively, hold the packet that has an undefined **dictid**, with a suitable timeout, until the matching map record arrives. The 'U' record is special in that adds additional information to a previous 'u' record and is sent when that information becomes known. Specifically, the experiment code and the activity code for the user identified in the 'u' record. 'U' record information may or may not be available and is dependent on properly configured packet marking or identifying information in a file URL's **cgi** (i.e. via the **scitag.flow** token). Mapping experiment and activity codes to actual names requires access to a json file maintained by the research networking infrastructure group (e.g. **ESNET** or **LHCONE**). # 3.3.1 Message Info Field | useruseruseruser | ents of info id\nsrvinfo id\npath id\nappinfo id\nprginfo | Code
u
U | Contents of info userid[\nauthinfo] userid[\neainfo] userid\nxfrinfo | | |---|---|--------------------|--|--| | userid: | prot/user.pid:sid@ho | ost | | | | authinfo: | [&p=ap&n=[dn]&h=[hn]&o= | [on] &r: | =[rn] &g=[gn] &m=[info]][loginfo] | | | eainfo: | &Uc=udid&Ec=expc&Ac=acto | Ç. | | | | loginfo: | &x=[xeqname]&y=[minfo]&1 | ={4 6 | } | | | prginfo: | ginfo: xfn\n&tod=tod&sz=bytes&at=at&ct=ct&mt=mt&fn=x | | | | | srvinfo: | rinfo: &site=sname&port=pr | | st=iname&pgm=prog&ver=vname | | | xfrinfo: | lfn\n&tod=tod&sz=byt | es &t r | n=sec&op=op&rc=rc[&pd=data] | | # Where: | Token | Explanation | |---------|---| | actc | The activity code associated with the user identified by <i>udid</i> . | | ар | Authentication protocol name used to authenticate the client. | | appinfo | Un-interpreted application or plug-in supplied information. | | at | File's access time in Unix seconds. | | bytes | Size of the migrated, purged, or staged file in bytes. | | ct | File's creation time in Unix seconds. | | ехрс | The experiment code associated with the user identified by <i>udid</i> . | | data | Optional program monitoring data returned by the transfer command. | | dn | Client's distinguished name as reported by ap. If no name is present, the | | | variable data is null. | | gn | Client's group names in a space-separated list. If no groups are present, | | | the tag variable data is null. | | hn | Client's host's name as reported by ap. If no host name is present, the | | | variable data is null. | | host | Host name, or IP address, where the user's request originated. | | iname | Server's instance name as specified with he -n command line option. If | | | no instance name was specified, "anon" is reported as the instance name. | | Token | Explanation | |---------|--| | lfn | Logical name of the transferred file. | | loginfo | Arbitrary monitoring information specific to the protocol being used at | | | login time. If no information is present, the tag variable data is null. | | minfo | Contents of the XRD_MONINFO client-side environmental variable. | | mt | File's modification time in Unix seconds. | | on | Client's organization name as reported by ap. If no organization is | | | present, the tag variable data is null. | | ор | The character operation code for a file transfer event, as follows: | | | 0 - Unknown operation, this usually indicates a logic error. | | | 1 - File was copied into the server by client request. | | | 2 - File was copied out of the server
by migration system request. | | | 3 - Same as 2 but the file was removed after migration. | | | 4 - File was copied out of the server by client request. | | | 5 - Same as 4 but the file was removed after the copy completed. | | | 6 – File was copied into the server by staging system request. | | path | Full path name of the file being opened. | | pid | User's process number that issued the request. | | pnum | Server's main port number. | | prog | Name of the server's executable program. | | prot | Communication protocol being used by the client (e.g., xroot, http, etc). | | rc | The return code. If the request was successful, the it is zero. Otherwise, | | | the request failed. For failing stage requests, the <i>bytes</i> is also zero. | | rn | Client's role name as reported by <i>prot</i> . If no role name is present, the | | | variable data is null. | | sec | Number of seconds it took to migrate or stage in the file (i.e., the time | | | between the start of the request to the time the request completed). | | sid | Server's fingerprint for the connection to <i>user:pid</i> at <i>host</i> . | | sname | Server's designated site name. | | tod | The Unix seconds, as returned by time(), when the record was produced. | | udid | The user's dictionary id sent on a previous 'u' record. | | user | Unix username of the user as reported by the client (i.e. unverified) or the | | | plug-in identifier. You can distinguish between the two as plug-ins | | | always report a <i>pid</i> of zero. The user name is the plug-in component | | | name (e.g. pfc). | | vname | Server's version identification string. | | x | The letter '1' if xfn is a logical file name (LFN) or ' p ' if it is a physical file | | | name (PFN). Normally, x should be '1'. See the notes for exceptions. | | Token | Explanation | | | | |---------|--|--|--|--| | xeqname | Name of the executable program the client is running with the path | | | | | | removed. | | | | | xfn | Logical or physical name of the file that was purged. The "fn" tag | | | | | | indicated the name's type (see the description of the <i>x</i> value). | | | | | 4 6 | Client's network mode: 4 for IPv4 and 6 for IPv6. | | | | #### **Notes** - 1) The sid The **d** , **i** and **u** messages with *authinfo* contain two ASCII text strings, separated by a new-line (\n) character. - 2) The \mathbf{p} and \mathbf{x} messages contain three ASCII text strings, separated by a newline (\mathbf{n}) character. - 3) The "fn" tag in the **p** message should normally have a value of 'l'. When an error occurs translating the physical file name to its logical counterpart, the physical name is reported and the tag value is set to **p**. Reporting of physical names should be treated as an error and is likely due to a misbehaving nameto-name plug-in. - 4) The **u** messages do *not* end with a new-line character if *authinfo* was not requested when configuring monitoring. - 5) The server's site name is arbitrary and optional and may be specified on the command line or in the configuration file. - 6) Mapping packets can be sent at any time. Interspersed with the mapping packets are file, redirect, and trace packets. - 7) The server identification packet, =, may be sent on a periodic basis. See the **ident** option on the **xrootd.monitor** and **frm.all.monitor** directives. # 3.3.2 Alternative Monitor Map Messages (g-Stream) **g-s**treams can be configured to send packet headers as a **CGI** query string or a **JSON** object. Both are text-only formats. This only affects the **=**, **d**, and **i** map records as these are the only ones that the **g-s**tream can create. Each message starts with the alternative packet default header described earlier (i.e. *dflthdr*, *fullhdr*, and *srchdr*). Additional tokens are added to the header, as shown below. ``` CGI: dflthdrfullhdr dflthdr: code==&pseq=pseq&stod=stod&sid=sid JSON: {dflthdr, src{fullhdr}} dflthdr: "code":"=","pseq":pseq,"stod":stod,"sid":sid ident ("=") message ``` # Where: | Token | Explanation | | | | |--------|---|--|--|--| | code | Identifies the packet and is one of: | | | | | | d – dictid for a path (xrootd only) | | | | | | i – dictid for information (xrootd only) | | | | | type | The g -stream generating the message and is one of: | | | | | | C – generated by the pfc plug-in (i.e. cache) | | | | | | M – generated by the ccm plug-in (i.e. cache context management) | | | | | | T – generated by the tcpmon plug-in | | | | | dictid | Numeric dictionary identifier which is unique within a server instance. | | | | | data | Data associated with <i>dictid</i> . | | | | # 3.4 The f-stream (fstat) The **f-s**tream is enabled using the **fstat** option on **the xrootd.monitor** directive. It contains multiple types of variable length structures, each describing a particular event. However, it is always framed in the same way: - The packet starts with the standard header (**XrdXrootdMonHeader**), - followed by the **UNIX** time of the first event entry in the packet, encapsulated in an **XrdXrootdMonFileTOD** structure, and - is followed by one or more variable length structures detailing specific events. The following diagram shows the packet structure. Because the structures are variable length, each one starts (i.e. contains as its first member) a standard header structure, **XrdXrootdMonFileHdr**, that not only details the type of structure but also the length of the structure. It is always followed by the **XrdXrootdMonFileTOD** structure, as follows: You must use the length **XrdXrootdMonFileHdr::recSize** to skip to the next structure in the packet as members may be added causing the structure to change in length. The **recSize** member will always have the correct size of the enclosing structure. ## Monitoring The **recType** member identifies the type of structure. The value comes from the **recTval** enum defined in the structure but not shown in the graphic. The following table summarizes the possible values (**recType** values, when used, should be preceded by "**XrdXrootdMonFileHdr:**"). | XrdXrootdMonFileHdr::recType | Structure Encompassing Header | |------------------------------|-------------------------------| | isClose | XrdXrootdMonFileCLS | | isDisc | XrdXrootdMonFileDSC | | isOpen | XrdXrootdMonFileOPN | | isTime | XrdXrootdMonFileTOD | | isXFR | XrdXrootdMonFileXFR | The **recFlag** member contains structure-specific flags which are discussed along with each structure. The **recSize** member contains the actual size of the structure. After converting it to host byte order, it must be used to find the start of the next structure in the packet. Since each structure starts with **XrdXrootdMonFileHdr**, it is easy to make a determination as to which actual structure the header should be cast to. When **recType** is neither **isDisc** nor **isTime** then **fileID** in the structure contains the **dictid** assigned to the file associated with the structure. When **recType** is **isDisc** then **userID** in the structure contains the **dictid** assigned to the disconnecting user. Otherwise, **nRecs** should be used as it contains the number of records in the packet and can be used to distribute events across the reporting time interval. As previously noted, **XrdXrootdMonHeader** is always the first structure in the packet and is always followed by the **XrdXrootdMonFileTOD** structure, as follows: The **tbeg** value is the Unix time when the following record was added to the packet and **tEnd** is the Unix time when the packet was sent. Recall that the **Hdr** contains the number of subsequent records in the packet in the **nRecs** field in this record type. The server's identifier appears in each **XrdXrootdMonFileTOD** entry in the **sID** member. This is identical to the *sid* in the *userid* in map entries. It is encoded in the lower 48 bits of the first 8 bytes and always appears once after the header. You can extract the *sid* with the following expression Definitions of the structures and symbols described here can be found in the "XrdXrootdMonData.hh" file. The following table lists all possible values in the header **recFlag** member for the TOD structure. The values are defined in **XrdXrootdMonFileHdr::recFval** enum. However, they must be tested individually using a bitwise "and" operator. The **recFlag** values, when used, should be preceded by "**XrdXrootdMonFileHdr::**". | XrdXrootdMonFileHdr::recFlag | Meaning | | | |------------------------------|---------------------------|--|--| | hasSID | The sID member is present | | | If you are using the **sID** member, you should test if the **hasSID** flag is set. Old records did not have this member. #### 3.4.1 Disc Event When a client disconnects from the server, an **isDisc** record is placed in the f-stream. This record consists of nothing more than the header and identifies the disconnecting user. It is always the last record generated by the user. ``` struct XrdXrootdMonFileDSC { XrdXrootdMonFileHdr Hdr; // recType == isDisc }; ``` The **tbeg** value is the Unix time when the following record was added to the packet and **tEnd** is the Unix time when the packet was sent. Recall that the **Hdr** contains the number of subsequent records in the packet in the **nRecs** field in this record type. # 3.4.2 Open Event Information regarding a file open event is shown below. Open events insert the variable length structure **XrdXrootdMonFileOPN** into the **f**-stream. The structure is variable because it may or may not contain the **XrdXrootdMonFileLFN** structure. If the structure exists then **recFlag** indicates this. The structure is included if the lfn option is specified on the **xrootd.monitor** directive. The reason this is optional is because a **d** map message is sent if the
files option is specified as well. In this case, there is no reason to duplicate the information. If **XrdXrootdMonFileLFN** is present it is variable in size. The structure merely defines the maximum size of the **Ifn** which makes it convenient to use functions like **strcpy()** without the compiler warning that the copy exceeds the length of the buffer. Since the string defined in **ufn.lfn** is guaranteed to end with a null byte, all string functions can be used on this array. Preceding the array is the **dictid** assigned to the client that performed the open in **ufn.user**. This **dictid** is reported in the **u**-stream (i.e. **u** map info) when the client initiates a session. This is enabled with the **auth** or **user** options on the **xrootd.monitor** directive. If neither has been selected, the **dictid** is reported as zero (i.e. unassigned). The following table lists all possible values in the header **recFlag** member for the open structure. The values are defined in **XrdXrootdMonFileHdr::recFval** enum. However, they must be tested individually using a bitwise "and" operator. The **recFlag** values, when used, should be preceded by "**XrdXrootdMonFileHdr::**". | XrdXrootdMonFileHdr::recFlag | Meaning | |------------------------------|--------------------------------| | hasLFN | XrdXroodMonFileLFN present | | hasRW | File opened for reads & writes | #### 3.4.3 Close Event The close structure describing a close event is shown below. ``` struct XrdXrootdMonStatOPS readv; // Number of read() calls write; // Number of write() calls rsMin; // Smallest road () int int int // Smallest readv() segment count short short rsMax; // Largest readv() segment count long long rsegs; // Number of readv() segments int rdMin; // Smallest read() request size rdMax; // Largest read() request size rvMin; // Smallest readv() request size rvMax; // Largest readv() request size wrMin; // Smallest write() request size int int int int wrMax; // Largest write() request size int } ; union XrdXrootdMonDouble { long long dlong; double dreal; }; struct XrdXrootdMonStatSDV XrdXrootdMonDouble read; // Sum(all read requests)² (bytes) XrdXrootdMonDouble readv; // Sum(all readv requests)² (bytes) XrdXrootdMonDouble rsegs; // Sum(all readv segments)² (count) XrdXrootdMonDouble write; // Sum(all write requests)² (bytes) } ; struct XrdXrootdMonStatXFR long long read; // Bytes read from file using read() }; struct XrdXrootdMonFileCLS // Variable Length! XrdXrootdMonFileHdr Hdr; // Always present XrdXrootdMonStatXFR Xfr; // Always present XrdXrootdMonStatOPS Ops; // OPTIONAL XrdXrootdMonStatSSQ Ssq; // OPTIONAL } ; ``` When a file is closed, a <code>XrdXrootdMonFileCLS</code> structure is inserted into the <code>f-stream</code>. It is variable in length because certain statistics are optional. The <code>recFlag</code> bits in the <code>XrdXrootdMonFileHdr</code> record indicate which structures are present. Additionally, the flag indicates whether or not the client actually closed the file. The values are defined in <code>XrdXrootdMonFileHdr::recFval</code> enum. However, they must be tested individually using a bitwise "and" operator. The following table summarizes the possible values (<code>recFlag</code> values, when used, should be preceded by "<code>XrdXrootdMonFileHdr::"</code>). | XrdXrootdMonFileHdr::recFval | Meaning | |------------------------------|----------------------------| | forced | Disconnect prior to close | | hasOPS | XrdXroodMonFileOPS present | | hasSSQ | XrdXroodMonFileSSQ present | The **XrdXrootdMonFileOPS** structure is inserted when the **ops** option is specified in the **xrootd.monitor** directive. It is important to note that the minimum and maximum values for **readv** requests represent bytes for a complete quest request (i.e. sum of all segments). It is not the minimum and maximum of any individual segment. The **XrdXrootdMonFileSSQ** structure is inserted when the **fstat ssq** option is specified. The counts can be used to compute the standard deviation for read and write request sizes using the formulae show below. Normally, **ssq** implies **ops** because standard deviation cannot be computed without the operation counts. $$S = \sqrt{\left\{ \frac{\sum fx^2}{n} - \left(\frac{\sum fx}{n}\right)^2 \right\}}$$ The sum of squares count is reported in network byte order using the IEEE 754 floating point format. The counts are not available on platforms that do not support the IEEE 754 format. #### 3.4.4 Xfr Event The **f-s**tream may contain transfer events when the **fstat xfr** option is specified. These events detail in-progress data transfers for currently open files. One such event is produced for each open file that has had I/O activity since the last report. Because it is time driven, files opened during the reporting may or may not be included in the event stream. However, if they are still open they are included during the next reporting interval. In all cases, an open event always precedes a transfer event for that file. Xfr events for a file can never appear after the file's close event entry. The following details the transfer event data structure. # 3.5 The g-stream (ccm, pfc, tcpmon and tpc) The **g-s**tream is enabled using the **ccm**, **pfc**, **tcpmon**, or **tpc** option on the **xrootd.monitor** or **xrootd.mongstream** directive. It contains multiple types of variable length **ASCII** newline separated text fields, each describing a particular event. However, it is always framed in the same way: - The packet starts with the standard header (binary, **CGI**, or **JSON**). - It is followed by temporal information which contains the **UNIX** time of the first event entry followed by the **UNIX** time of the last event entry. The time stamps are followed by an encoded a plug-in and server identifier. - The temporal information is followed by one or more variable length ASCII newline separated text fields detailing specific events. The last field always ends with a null byte. The following diagram shows the packet structure. ``` struct XrdXrootdMonGS; {struct XrdXrootdMonMonHeader hdr; int tBeg; // UNIX time of first entry int tEnd; // UNIX time of last entry kXR_int64 sID; // Provider identification } * * 1 or more newline separated ASCII text strings with the last * such string ending with a null byte. * ``` The content of each text string is specific to the plug-in that generates the information. The plug-in chooses which format to use (e.g. **CGI**, **JSON**, **xml**, etc). The **sID** identifies who generated the information. In host byte order, the first eight bits contain the provider's identification while the last 48 bits contain the server's fingerprint. The table below lists possible providers: | Provider (i.e. plug-in) | Contents of 1 st 8 bits | |-----------------------------|------------------------------------| | Cache Context Manager (ccm) | XROOTD_MON_GSCCM | | Proxy File Cache (pfc) | XROOTD_MON_GSPFC | | TCP connection monitor | XROOTD MON GSTCP | | Third party copy | XROOTD MON GSTPC | You can extract the provider's identifier with the following expression (ntohll(sID) >> XROOTD MON PIDSHFT) & XROOTD MON PIDMASK You can extract the server's identifier with the following expression ntohll(sID) & XROOTD_MON_SIDMASK Definitions of the structures and symbols described here can be found in the "XrdXrootdMonData.hh" file. While the **g-s**tream can be fed by many different information providers no **UDP** packet will ever contain information from more than a single provider. However, the packets may be intermixed and you will need to separate the streams and sequentially order the packets using the **sID**, the time stamps, and the packet sequence number. Be aware that each provider's **g**-stream uses its own packet sequence. Hence, each provider's stream must be ordered independently. Since information providers define the format of the data format contained in the **UDP** packet, the actual contents is described in the manual associated with the provider, as follows: | Provider ID | Manual | |------------------|---------------------------------------| | XROOTD MON GSCCM | This plug-in is not a core component. | | XROOTD_MON_GSPFC | Proxy Storage Services Reference | | XROOTD_MON_GSTCP | This plug-in is not a core component. | | XROOTD MON GSTPC | Xrd/Xrootd Configuration Referebce | ## 3.5.1 Alternative g-Stream Headers **g-s**treams can be configured to send packet headers as a **CGI** query string or a **JSON** object. Both are text-only formats. When configured, the stream's payload is prefixed by the following header (*dflthdr* and *srchdr* are described in alternative default header section). The g-stream can also generate text-only versions of the ident and map messages. Be sure to review those. ``` CGI: dflthdr[srchdr]&gs.type=type&gs.tbeg=tbeg&gs.tend=tend\n dflthdr: code=g&pseq=pseq&stod=stod&sid=sid JSON: {dflthdr[,"src":{srchdr}],gsinfo}\n dflthdr: "code":"g","pseq":pseq,"stod":stod,"sid":sid gsinfo: "gs":{"type":type,"tbeg":tbeg,"tend":tend} Alternative Header for g-stream Payload ``` #### Where: | Token | Explanation | | | | |-------|--|--|--|--| | type | The g -stream generating the message and is one of: | | | | | | C – generated by the pfc plug-in (i.e. cache) | | | | | | M – generated by the ccm plug-in (i.e. cache context management) | | | | | | T – generated by the tcpmon plug-in | | | | | tbeg | UNIX time of first payload entry. | | | | | tend | UNIX time of last payload entry. | | | | The packet payload (i.e. data following the header's newline character) consists of one or more newline separated ASCII text strings with the last such string ending with a null byte. ## 3.5.2 TPC g-Stream The TPC g-stream provides information on completed or failed third party copy requests/ Below is a sample of a JSON packet. The subsequent table
explains the key-value pairs. ``` { "TPC": "xroot", "Client": "abh.47358:24@cent7a.slac.stanford.edu", "Xeq": { "Beg": "2022-04-01T04:22:15.765838Z", "End": "2022-04-01T04:22:15.891503Z", "RC": 0, "Strm": 1, "Type": "pull", "IPv": 6 }, "Src": "xroot://cent7b.slac.stanford.edu:1094//tmp/abhfile", "Dst": "xroot://griddev08.slac.stanford.edu:1094//tmp/abhfile", "Size": 6293536 } ``` | Key | Sub Key | Type | Meaning of Value | | |--------|---------|----------|---|--| | Client | | char | ID or requesting client. | | | Dst | | char | Destination URL for the data. | | | Size | | number | Total number of bytes copied. | | | Src | | char | Source URL of the data. | | | TPC | | char | Protocol used to effect copy (i.e. "http" or "xroot"). | | | Xeq | Beg | ISO 8601 | Date and time when the copy was started. | | | Xeq | End | ISO 8601 | Date and time when the copy finished. | | | Xeq | IPv | number | Internet protocol version used to the copy (i.e. 4 or 6). | | | Xeq | RC | number | Ending return code; zero means success o/w failure. | | | Xeq | Strm | number | Number of streams used for the copy. | | | Xeq | Туре | char | Data flow direction: "pull" from source by | | | | | | destination or "push" to destination from source. | | The client ID is formatted as *username.pid:sfd@host* where *username* is an arbitrary name supplied by the client, *pid* is the client's process ID, and *sfd* is the server's socket file descriptor number servicing the client, and *host* is the name or IP address of the node where the client resides. Together these form a relatively unique client identification. # 3.6 The r-stream (redir) ``` struct XrdXrootdMonRedir {union kXR int32 Window; struct {kXR char Type; kXR char Dent; kXR int16 Port; rdr; } arg0; union {kXR unt32 dictid; kXR int32 Window; } arg1; }; struct XrdXrootdMonBurr XrdXrootdMonHeader hdr; union {kXR int64 sID; kXR char sXX[8]; }; XrdXrootdMonRedir info[]; }; ``` The **MonRedir** record is highly encoded and repeated as often as possible in a single datagram, as shown in the **MonBurr** structure. Each instance of info represents a server identification record^{‡‡}, a redirect record, or a window timing mark. All binary data appears in network byte order. The **info[].arg0.Type** character identifies the type of information the entry contains. The character is bit encoded and should be tested for the proper bit values to determine the type of record, as follows: | Definition | Value | Meaning | |---------------------|-------|---| | XROOTD_MON_REDTIME | 0x00 | Window timing mark ^{§§} | | XROOTD_MON_REDIRECT | 0x8x | Redirect event generated by cmsd | | XROOTD_MON_REDLOCAL | 0x9x | Redirect event generated by xrootd | | XROOTD_MON_REDSID | 0xf0 | Server identification | XROOD_MON_REDIRECT and XROOTD_MON_REDLOCAL entries are variable length but always occupy and integral multiple of 8 characters (i.e., are padded out to always end on an 8-byte boundary). The "info[].arg0.Dent" indicates ^{‡‡} The server identification record always appears after the header and is never repeated in the packet. ^{§§} Window timing marks are indicated when the high order bit is *not* set. # Monitoring how many 8-byte words, *less one*, in the record. All other records occupy exactly eight bytes and the "**Dent**" field is used for other purposes. Additionally, the low order four bits of the XROOD_MON_REDIRECT and XROOTD_MON_REDLOCAL entry codes are modified by inserting the operation code in the last four bits of the symbol value. You can obtain the operation that caused the redirect by looking at the last four bits and comparing it to the following symbols. | Definition | Value | Meaning | |--------------------|-------|-----------------------------| | XROOTD_MON_CHMOD | 0x01 | Change file mode. | | XROOTD_MON_LOCATE | 0×02 | Locate file or directory. | | XROOTD_MON_OPENDIR | 0x03 | Open director for reading. | | XROOTD_MON_OPENC | 0×04 | Open file for creation. | | XROOTD_MON_OPENR | 0x05 | Open file for reading. | | XROOTD_MON_OPENW | 0x06 | Open file for writing. | | XROOTD_MON_MKDIR | 0×07 | Create a directory or path. | | XROOTD_MON_MV | 0×08 | Rename a file or directory. | | XROOTD_MON_PREP | 0x09 | Prepare request. | | XROOTD_MON_QUERY | 0x0a | Query information request. | | XROOTD_MON_RM | 0x0b | Remove a file. | | XROOTD_MON_RMDIR | 0x0c | Remove a directory. | | XROOTD_MON_STAT | 0x0d | Stat a file or directory. | | XROOTD_MON_TRUNC | 0x0e | Truncate a file. | | Field | Contents For Redirect Entries | |--------------------|--| | info[].arg0.Type | XROOTD_MON_REDIRECT or | | | XROOTD_MON_REDLOCAL plus modifier. See | | | modifier table for operation being performed. | | info[].arg0.Dent | Number of 8-byte entries used by this entry <i>less</i> 1. | | info[].arg0.Port | The server's port number to which the client is | | | being redirected to. | | info[].arg1.dictid | The client's dictionary ID ('u' map message). | | info[].arg1+4 | The server's name and path being accessed. It | | | always ends with a null byte. | The server's "name" and target path follow the eight byte entry. The number of eight byte words occupied by this information is recorded in "info[].arg0.Dent". This always appears as a null terminated character string with the following format: ``` [servername]:pathname servername: dnsname | ipv4address | [ipv6address] ``` When the server's name is not present in the record, it means that the client has been directed to a physical file on the client's host whose physical name is *pathname* (i.e. the **pfn**). Otherwise, *pathname* is the logical file name (i.e. **lfn**) used by the client. | Field | Contents For Window Entries | |--------------------|---------------------------------------| | info[].arg0.Type | XROOTD_MON_REDTIME | | info[].arg0.Window | Window size in the low order 24 bits. | | info[].arg1.Window | Unix time of the new window. | Since each datagram is self-consistent, a window entry will always appear before any redirect entries (i.e. the first entry after the server identification entry) with he last entry being another window entry. Additional window entries may be placed within the message should redirect requests cross window boundaries within the same data-gram. Because request timing is variable, window start and end times are rarely adjacent. That is, a window may end at time x but the new window may start at a time that is many windows away from the end time. This is because **xrootd** compresses adjacent empty windows. To obtain the end time of a window you must add **info[].arg0.Window** (low order 24 bits) to the previous **info[].arg1.Window**. While this should not be done for the first window entry, it should be done for all subsequent window entries. A window entry may also be forced should the buffer fill or the connection is closed before the window actually ends. In this case, the window may be substantially smaller than configured window size. The receiver should not count that each window will be the same size. When this happens, the <code>info[last-1].arg1.Window</code> value will be the same as the <code>info[last].arg1.Window</code> value. The receiver should internally time-stamp each entry using an appropriate distribution curve within the reported window. # Monitoring | Field | Contents For Server Identification Entries | |------------------|---| | info[].arg0.Type | XROOTD_MON_REDSID | | info[] | Server's identification in the low order 48 bits. | The server's identifier appears in each **XROOTD_MON_REDSID** entry. This is identical to the *sid* in the *userid* in map entries. It is encoded in the lower 48 bits of the first 8 bytes and always appears once after the header. You can extract the *sid* with the following statement Definitions of the structures and symbols described here can be found in the "XrdXrootdMonData.hh" file. # 3.6.1 Understanding Multiple Redirection Streams In order to maximize parallelism, **xrootd** maintains several redirection monitoring streams, assigning each request to the first available stream. The number of streams may be specified on the **xrootd.monitor** directive. The default is 3 streams. Because multiple streams exist, event data ordering is non-deterministic within the monitoring window. That is, it is impossible to tell the order of a specific sequence of requests within a window once the streams are merged. # 3.7 The t-stream (files, io, and iov) The **t-s**tream is produced when the **files**, **io**, or **iov** options are used on the **xrootd.monitor** directive. The information contained in this stream is a virtual superset of he information in the **f-s**tream. This is because all values in the **f-s**tream can be derived from the **t-s**tream. However, the **t-s**tream also provides the ability to obtain insights on data access pattern information that is not available elsewhere. However, this comes at a substantial cost since all data seeks are reported. This results in a substantial amount of monitoring information and about 7% degradation in server performance. In almost all cases, the **f-s**tream provides sufficient monitoring information. In order to maintain a low overhead, each connection collects its own I/O event data in a local buffer and sends the data when the buffer is full or when the connection is closed. Non-I/O events (e.g., open, close, etc) are collected globally in a separate stream while redirect events are collected globally as one or more separate streams. A stream buffer is sent when it is full or when the specified timeout occurs. I/O and non-I/O events may be intermixed when the configuration specifies a particular recipient for such a combination. Low overhead is also maintained by not time-stamping each event. That is, the information is
collected within a statistical window. While the order of events is maintained, it is impossible to tell precisely when the event actually happened within this window. The receiver should uniformly distribute the events across the window. Since each connection maintains its own local buffer of I/O events, multiple datagrams may be sent with disparate, possibly overlapping, windows. The receiver must merge all of these windows into a uniform coherent time stream. This is possible because precise times are always given for the start and end of the window in which the events were collected. Care should be taken to appropriately order the packets, as UDP packets can arrive in any order. To assist in ordering packets, each packet carries a time-stamp as well as a sequence number so that the receiver can easily order packets as well as discover if any packets were lost due to network congestion. The next page illustrates one a typical **t-s**tream. It also illustrates the physical and logical sequence of packets from a single server. You should note that the window start and end times do not correlate with the packet send time. Hence, packet reordering is typically necessary to get a linear view of time. ``` Packet physical order: Packet 0: t=4 seq=2 window=tod+a:tod+b <I/O requests> Packet 1: t=4 seq=1 window=tod+x:tod+y <I/O requests> Packet 2: t=1 seq=0 window=tod+j:tod+k <I/O requests> Packet 3: t=5 seq=3 window=tod+d:tod+e <I/O requests> Packet logical order: Packet 2: t=1 seq=0 window=tod+j:tod+k <I/O requests> Packet 1: t=4 seq=1 window=tod+x:tod+y <I/O requests> Packet 0: t=4 seq=2 window=tod+a:tod+b <I/O requests> Packet 3: t=5 seq=3 window=tod+d:tod+e <I/O requests> Window logical order: Packet 0: t=4 seq=2 window=tod+d:tod+b <I/O requests> Packet 2: t=1 seq=0 window=tod+d:tod+f <I/O requests> Packet 3: t=5 seq=3 window=tod+d:tod+f <I/O requests> Packet 1: t=4 seq=1 window=tod+j:tod+k <I/O requests> Packet 1: t=4 seq=1 window=tod+x:tod+y <I/O requests> ``` In order to maximize the amount of information that can be stored in a single datagram as well as to minimize redundancy, a dense encoding scheme is used. The messages are described in the following sections. ### 3.7.1 Monitor Trace Message Format ``` struct XrdXrootdMonTrace {union {kXR int64 val; kXR char id[8]; kXR int16 sVal[4]; kXR unt32 rTot[2]; arg0; union {kXR int32 buflen; kXR unt32 HostID; kXR unt32 wTot; kXR int32 Window; arg1; union {kXR unt32 dictid; kXR int32 Window; arq2; }; struct XrdXrootdMonBuff {XrdXrootdMonHeader hdr; XrdXrootdMonTrace info[]; }; ``` The **MonTrace** record is highly encoded and repeated as often as possible in a single datagram, as shown in the **MonBuff** structure. Each instance of info represents a read, write, open, close request, application id, or a window timing mark. All binary data is appears in network byte order. The **info[].arg0.id[0]** character identifies the type of information the entry contains, as follows: | Definition | Value | Meaning | |-------------------|----------------|---------------------------------| | XROOTD_MON_OPEN | 0x80 | File has been opened | | XROOTD_MON_READV | 0x90 | Details for a kXR_readv request | | XROOTD_MON_READU | 0x91 | Unpacked details for kXR_readv | | XROOTD_MON_APPID | 0xa0 | Application provided marker | | XROOTD_MON_CLOSE | 0xc0 | File has been closed | | XROOTD_MON_DISC | 0xd0 | Client has disconnected | | XROOTD_MON_WINDOW | 0xe0 | Window timing mark | | | $<=0x7f^{***}$ | Read or write request | Some records contain additional flags. The definition and meaning of these flags is described below: | Definition | Value | Meaning | |-------------------|-------|---------------------------------| | XROOTD_MON_FORCED | 0x01 | Entry due to forced disconnect. | | XROOTD_MON_BOUNDP | 0x02 | Entry for a bound path. | Entries in the I/O and non-I/O event streams are always of fixed size (i.e., 16 characters). The following fields are used for each type of record: | Field | Contents For Appid Request Entries | |------------------------------|--| | <pre>info[].arg0.id[0]</pre> | XROOTD_MON_APPID | | info[].arg0.id[13] | Reserved. | | info[].arg0.id[415] | Up to 12 characters of application identification. | ^{****}Indicates that if the high order bit is zero, then this is a read/write request. | Field | Contents For Close Request Entries | |--------------------------------|---| | info[].arg0.id[0] | XROOTD_MON_CLOSE | | info[].arg0.id[1] | Number of bits Info[].arg0.rTot[1] has | | | been right shifted to fit into a 32-bit unsigned int. | | info[].arg0.id[2] | Number of bits Info[].arg1.wTot has been | | | right shifted to fit into a 32-bit unsigned int. | | info[].arg0.id[3] | Reserved. | | <pre>info[].arg0.rTot[1]</pre> | Scaled number of bytes read from the file. | | info[].arg1.wTot | Scaled number of bytes written to the file. | | info[].arg2.dictid | The file path's dictionary ID ('d' map message). | | Field | Contents For Disconnect Request Entries | |------------------------------|---| | <pre>info[].arg0.id[0]</pre> | XROOTD_MON_DISC | | <pre>info[].arg0.id[1]</pre> | May contain XROOTD_MON_BOUNDP and | | | XROOTD_MON_FORCED | | info[].arg0.id[27] | Reserved. | | info[].arg1.buflen | Number of seconds that client was connected. | | info[].arg2.dictid | The client's dictionary ID ('u' map message). | | Field | Contents For Open Request Entries | |------------------------------|--| | <pre>info[].arg0.id[0]</pre> | XROOTD_MON_OPEN | | info[].arg0.id[17] | Size of the file in bytes. | | info[].arg1 | Reserved. | | info[].arg2.dictid | The file path's dictionary ID ('d' map message). | | Field | Contents For Read/Write Request Entry | |--------------------------------|--| | info[].arg0.val | Read or write offset (see below). | | <pre>info[].arg1.bufflen</pre> | Length of the read when non-negative. When | | | negative, this is the length of a write request. | | <pre>info[].arg2.dictid</pre> | The file path's dictionary ID ('d' map message). | | Field | Contents For Ready Request Entry | |--------------------------------|--| | <pre>info[].arg0.id[0]</pre> | XROOTD_MON_READU | | info[].arg0.id[1] | readv request identifier | | info[].arg0.sVal[1] | Number of elements in the readv vector | | <pre>Info[].arg0.rTot[1]</pre> | Reserved. | | <pre>info[].arg1.bufflen</pre> | Length of the read. | | info[].arg2.dictid | The file path's dictionary ID ('d' map message). | | Field | Contents For Ready Request Entry | |--------------------------------|--| | <pre>info[].arg0.id[0]</pre> | XROOTD_MON_READV | | <pre>info[].arg0.id[1]</pre> | readv request identifier | | <pre>info[].arg0.sVal[1]</pre> | Number of elements in the readv vector | | <pre>Info[].arg0.rTot[1]</pre> | Reserved. | | <pre>info[].arg1.bufflen</pre> | Length of the read. | | info[].arg2.dictid | The file path's dictionary ID ('d' map message). | | Field | Contents For Window Entry | |------------------------------|--| | <pre>info[].arg0.id[0]</pre> | XROOTD_MON_WINDOW | | <pre>info[].arg0.id[1]</pre> | Reserved. | | info[].arg0.val | Server identifier in the low order 48 bits. | | info[].arg1.Window | Unix time of when the previous window ended. | | info[].arg2.Window | Unix time of when this window has started. | Since each datagram is self-consistent, a trace message will always start and end with a window entry. Additional window entries may be placed within the record should requests cross window boundaries within the same data-gram. Because request timing is variable, window start and end times are rarely adjacent. That is, a window may end at time x but the new window may start at a time that is many windows away from the end time. This is because **xrootd** compresses adjacent empty windows. A window entry may also be forced should the buffer fill or the connection is closed before the window actually ends. In this case, the window may be substantially smaller than configured window size. The receiver should not count that each window will be the same size. The receiver should internally time-stamp each entry using an appropriate distribution curve within the reported window. The only difference between XROOTD_MON_READU and XROOTD_MON_READU entries is that the XROOTD_MON_READU indicates that individual read entries described by XROOTD_MON_READU follow the entry. The number of read entries equals the number specified in info[].arg0.sVal[1]. That is, the reads in the readv request vector are unpacked and presented as individual reads. This happens with the iov option is specified on the xrootd.monitor directive. This allows you to associate read entries with a particular readv request. ### Monitoring A single **readv** request may generate multiple **XROOTD_MON_READU** or **XROOTD_MON_READV** records. A record is generated whenever the vector switches from reading one file to another file. The information in the record then pertains to a file identified by the **dictid**. Multiple entries associated with a single **readv** request will always have the same request identifier placed in info[].arg0.id[1]. Request identifiers cycle every 256 **readv** requests. An **XROOTD_MON_READV** entry may be followed by multiple read entries. This happens with the **iov** option was specified on **the xrootd.monitor** directive. The read entries detail each element in the **readv** vector. The preceding **XROOTD_MON_READV** entry indicates how many read entries follow. This allows you to associate read entries with a particular **readv** request. Request identifiers cycle every 256 **readv** requests. The server's identifier appears in
each **XROOTD_MON_WINDOW** entry. This is identical to the *sid* in the *userid* in map entries. It is encoded in the lower 48 bits of the first 8 bytes. You can extract the *sid* with the following statement ntohll(info[].arg0.val & XROOTD MON SIDMASK) # 4 Document Change History # 14 July 2009 This manual was introduced. # 16 July 2009 • Added example on **mpxstats**. ### 17 February 2010 - Correct the xrd.report directive example. - Move *toe* id from **statistics** end-tag to the **sgen** part. ## 24 May 2011 Correct description of the Monitor Map Message. Specifically, remove the 'v' record and expand on the 'u'; record. ### 14 June 2011 - Describe the cms protocol summary report information. - Indicate which int and int64 values are increasing or variable. # 29 June 2011 - Add **dly**, **err** and **rdr** statistics to the **xrootd** protocol summary data. - Indicate that aio.num, aio.rej, ops.pr, ops.rd and ops.wr values are actually int64 in size in the xrootd protocol summary data. #### 5 October 2011 • Describe the &g and &m fields in the authinfo monitor record. ----- Release 3.1.0 #### 10 October 2011 - Document the new **XROOTD_MON_READV** monitor record. - Document the new 'm', and 'p' map records. - $\bullet \quad \text{Describe additional information added to the '} \mathbf{s'} \text{ map record.}$ #### 25 October 2011 - Describe the migration ('m'), staging ('s'), and purging ('p') monitor records. - Describe the new option on the **xrootd.monitor** directive that enables migration and purging monitor records. - Describe the xpd option on the frm.xfr.copycmd directive that allows the transfer script to add monitoring information to the migration and staging records. - Document <lgn> tag in the xrootd summary statistics. - Describe the XROOTD_MON_BOUNDP and the XROOTD_MON_FORCED flags that may appear in the disconnect record. #### 3 November 2011 Document the new XROOTD_MON_REDIRECT and XROOTD_MON_REDHOST monitor records. #### 3 December 2011 - Document the new server identification map ('=') record. - Combine the migration ('m') and staging ('s') map records under a single transfer ('x') map record. #### 13 December 2011 - Add more descriptive information about redirection events. - Document changes in the XROOTD_MON_REDIRECT and XROOTD MON REDHOST monitor record. #### 14 January 2012 • Re-implement the redirection monitoring data to make it easier to process. The record format and codes have completely changed since the last issue of this document. #### ----- Release 3.1.1 ### 24 April 2012 - Document third party copy statistics in the ofs summary record. - Correct types in the redirect monitoring section. |
Release 3.2.0 | |-------------------| |
Release 3.2.1 | |
Release 3.2.2 | |
Release 3.2.3 | |
Release 3.2.4 | # 22 September 2012 - Document the **f-s**tream (**fstat** option). - Document the xrootd.ops.rs and xrootd.ops.rv counters in the xrootd summary data. - General re-ordering of the manual to improve comprehension. ### ----- Release 3.2.5 #### 22 October 2012 Document the site name information is the summary record as well as in the server's identification record. #### 26 October 2012 • Document the XROOTD_MON_READU detailed entry. ``` ------ Release 3.2.6 ----- Release 3.2.7 ``` #### 15 December 2012 • Document the revised format of the **f**-stream (**fstat** option). # 15 January 2013 • Document the **isDisc f**-stream (**fstat** option) record type. #### 17 June 2014 • Document the &x and &y cgi tags in the user identification detailed map record. # 21 April 2016 - Document the **sID** member in **XrdXrootdMonFileTOD** structure. - Add admonition to always use the **XrdXrootdMonFileHdr::recSize** to skip to the next record as structure lengths may change. | Monitoring | | |------------|--| | | | #### ----- Release 4.0.0 # 7 July 2014 - Correct mistakes in the user identification record. - Document the fact that the user identification also includes the communication protocol (started in R4). # 17 September 2018 • Document the "I" tag in the loginfo portion of the "u" mapping record. ----- Release 5.0.0 # 1 May 2019 • Document the **g-s**tream. #### 2 December 2019 • Document the "cache" and "pss" summary statistics. # 20 August 2020 • Document the **g**-stream and optional **CGI** and **JSON** headers. #### 15 March 2022 - Document the **U** map record. - Document the **tpc** g-stream. #### 21 March 2022 • Document the **TPC g**-stream.