(ﬁ’ XRootD

The XRootD Protocol
Version 5.2.0

el AL

b M\

NATIOMNAL ACCELERATOR LABORATORY

Andrew Hanushevsky
4-December-2023

Protocol

©2004-2023 by the Board of Trustees of the Leland Stanford, Jr., University
All Rights Reserved
Produced under contract DE-AC02-76-SFO0515 with the Department of Energy
The protocol specification described in this document falls under BSD license terms.
The specification may be used for any purpose whatsoever.
Use of this specification must cite the original source -- xrootd.org.
Binary definitions in header file XProtocol.hh superceed any such definitions in this document.

XRootD Protocol Version 5.2.0 Page: 2

Contents

1 Contents

1
2

COMEEIIES ... e bbb 3
Request/ReSPONSE PTOtOCOL ...t sess s 7
21 Format of Client-Server Initial Handshake ..., 7
2.2 Data SerialiZation.....oiicireiiciciccc e 9
2.3 Client REQUESt FOTMAL ..ccveicicirciceceeccieireicireiciscee et ssessessese s sttt esessessessessessescsncene 11
231 Valid Client ReqUESES........cocuiiiicciri s sssaais 13
232 Valid CHent Pathis ... 14
233 Client Recovery from Server Failures ..., 15
24 Server Response FOTMAL ...ttt ssssensssenaes 17
241 Valid Server Response Status COdes ... sans 18
242 KXR_attn Response FOrmat ... sssanns 19
2421 kXR_attn Response for kKXR_asyncms Client ACHONcccccvuveeuceunecmccerccnecmrecmeeenennns 20
2422 kXR_attn Response for kXR_asynresp Client Action ... 21
243 KXR_authmore Response FOrmat.......ccciiininiiccsccs s 23
244 KXR_error Response FOImMat ... ssssssesssssesens 24
2441 Error Codes and ReCOVEIY ACHONS........occcwiuceniuiecereeiiienieeisenesieeseneeeaeisesesaseesessesssons 25
245 KXR_ok Response FOrmat ... ssesssens
24.6 kXR_oksofar Response Format...................
247 kXR_redirect Response Format
2438 KXR_status Response FOrmat...........cccciiiiiiiccsssssssssssssnns
24.8.1 Valid ReSPONSETYPES ...ttt
249 KXR_wait ReSponse FOrmat........ccoiiiiniicisisccccctcesi s senens
2410 kXR_waitresp Response FOrmat ... sscans
2.5 Binary Definitions of Status, Error and Response Subcodescccoocucincinccinccnienccnccncnnn.
251 Response Status COAEs ... s seaas
252 KXR_AEN SUD COAES......veeceeeeeee ettt as e e s s enns
253 KXR_TEAITECt SUDCOAES ...ttt ettt s e s st sesesennseneaens
254 kXR_status Subcodes and Other VAlUes ... esesenenens
255 Error Codes ...,
Transport Layer Security (TLS) Support

3.1 Client-Server interactions to unilaterally use TLS
32 Client-Server interactions to use TLS only when required

Server Request Format
41 kXR_auth Request
4.2 kXR_bind Request

421 TLS CONSIAETALIONS ...ovucvreureecieeeireieieieireeetreie ettt ettt se s ssesesaesesacsesaces
43 KXR_ChKPOINt REQUESE ..ottt ese et sse s sensessenees

431 KkXR_ckpBegin, kXR_ckpCommit, and kXR_ckpRollback Subcodes

432 KXR_ckpQUEry SUDCOAE ...t

433 KXR_CKPXEG SUDCOA ...ttt essessess s aseaesens
44 KXR_ChMOA REGUESTcucereeeieieiiierieeieieicieieeeiseis it sessese st sessese s se s scane
45 KXR_CIONE REQUEST ...ttt

4.6 kXR_close Request
4.7 KXR_AITIISE REGUEST....oceiieeitceeecieie et
4.8 KXR_eNASESS REGUESL ...ouceeeeerrerercircireeeiciereeieie i ssease s saesassase s sass e sssssessenas
4.9 KXR_FAHT REQUEST ...t ess s s s s ese s s sse s easssns
491 LaYOUL Of MAMEUVEC ...
492 LaYOUL Of DAIUDEC ...ttt

XRootD Protocol Version 5.2.0 Page: 3

Protocol

493 kXR_fattr Request — Delete Subcode

494 KXR_fattr Request — Get SUDCOdE..........ccuiiiiiii e
495 KXR_fattr Request — List SUDCOAE.........c.ociiiiiciiiiciri e
49.6 KXR_fattr Request — Set SUDCOME..........ocuiieiiiiciiccce e

410 kXR_gpfile Request
411 kXR_locate Request
412 kXR_login Request

4.12.1 Additional Login CGITOKENSccocnuiiinieiiiriiciciiiie et ssessenens
413 KXR_MKAIT REGUESE ..ot e
414 KXR_MV REGUESL ..o et st caens
415 KXR_OPEN REGUEST ...t ssse e sase e sass e sse it ssse e sasssesaessscsens

4.15.1 Additional Open CGITOKENS ...
416 KXR_PING REOGUEST ...cvuieiiiii s ns
417 KkXR_pgread Request

4171 ErTor reCOVery ...

41711 Client............

417.1.2 Server....nccncnennenn.
4172 Unaligned reads
4.17.3 Backward Compatability ...

418 KXR_PEWTite REQUESTcouiuieiiiiiiii s
4181 EITOT TECOVETY ..ot s s sss s s s bbb

A8 TT CON Lt

BIB.L.2 SEIVEL ..ottt
4182 UNAliGNed WIIEEScovewuiicicciiiceeieie et sse s sas e e sasans
4183 Backward Compatability ... nsenne

419 KkXR_prepare Request
420 KkXR_protocol Request
420.1 Client’s expect setting & Server’s TLS Requirement Response.............cccccoucueinrincicnanes 125
4202 Protocol Security Requirements vs Response Implications.............cccoecvruviiviivciinccunnes 127
421 KXR_QUETY REGQUEST ..ottt sas e ss s e sa e seenaseaae 129
421.1 KXR_query Checksum Cancellation Request..........cccoininicininiicinnieiinnieieins 133
4212 KXR_query Checksum ReqUESL ...t 135
42121 Additional Query Checksum CGITOKENSccoovcuuiineecimniiniiscniseieciiseceisesenenan 136
4213 KXR_query Configuration REQUEST ... 137
42131 Format for Query Config Cms......coiiiiiieniiniie s
4213.2 Format for Query Configrole..............
421.3.3 Format for Query Config xattrs
4214 KXR_query Opaque ReqUest ...
4215 KXR_query Space REQUESL ... s sssssnas
4216 KXR_query Statistics REQUEST.........cccoeuiuiiiimiiiiccci s
4217 KXR_query Visa ReqUest........cciiiiiii s
4218 KXR_query Xattr ReqUESt ...
422 KXR_T€AA REQUEST ...t e e
423 KXR_T€AAV REQUEST ...t e sse s sse s e sesesnns
424 KXR_IIN REQUEST ..ot nae
425 KkXR_rmdir Requestccccocneurernennes
426 KkXR_setRequest.......cccoevenencnennennes

426.1 Valid kXR_set Values
427 KkXR_sigver Requestcccoeuuenucee.

4.27.1 SIgNING @ TEQUESLcuuieiiiiceci s e

XRootD Protocol Version 5.2.0 Page: 4

Contents

4272 Verifying a signed request ... 172
4.28 KXR_STat REQUEST ...t e nae 173
4281 Additional Stat CGITOKENS ..ot sssssssssnes 176
429 KXR_StatX REGUEST ..ottt 177
430 KXR_SYNC REGUEST ...ttt 179
431 KXR_UNCALE REGUEST ..ottt sse st e ss e s 181
432 KXR_WIIE REQUEST ..ottt sas e st 183
433 KXR_WIIteV REQUEST ...t ss s ssaas 185
5 The Security Framew OrK ... ssssaes 187
51 Framework for Transport Layer Protocols ...
52 Request Verificationcccccouecuceencenciccineunces

6 Document Change History

XRootD Protocol Version 5.1.1 Page: 5

Request/Response Protocol

2 Request/Response Protocol

2.1 Format of Client-Server Initial Handshake

When a client first connects to the XRootD server, it should perform a special
handshake. This handshake should determine whether the client is
communicating using XRootD protocol or another protocol hosted by the server.

The handshake consists of the client sending 20 bytes, as follows:

kXR_int32 0
kXR_int32 0
kXR_int32 0
kXR int32 4 (network byte order)
kXR—lnt32 2 O 12 (network byte order)

XRootD protocol, servers should respond, as follows:

streamid: kXR char smid[2]
status: kXR untlé 0

msglen: kXR int32 rlen
msguall: kXR int32 pval
msgual2: kXR int32 flag
Where:

smid initial streamid. The smid for the initial response is always two null
characters (i.e., “\0’);

rlen binary response length (e.g., 8 for the indicated response).
pval binary protocol version number.
flag additional bit-encoded information about the server; as follows:

kXR_DataServer -0x00 00 00 01 This is a data server.
KXR_LBalServer - 0x00 00 00 00 This is a load-balancing server.

XRootD Protocol Version 5.2.0 Page: 7

Protocol

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

2) The particular response format was developed for protocol version 2.0
and does not convey all of the information to capture features provided by
subsequent protocol versions. In order to provide backward compatibility,
this response format has been kept. The recommended mechanism to
obtain all of the information that may be needed is to “piggy-back” a
kXR_protocol Request with the handshake (i.e. send the handshake and
the request with a single write).

3) All twenty bytes should be received by the server at one time. All known
TCP implementations should guarantee that the first message is sent
intact if all twenty bytes are sent in a single system call. Using multiple
system calls for the first message may cause unpredictable results.

XRootD Protocol Version 5.2.0 Page: 8

Protocol

2.2 Data Serialization

All data sent and received is serialized (i.e., marshaled) in three ways:
1. Bytes are sent unaligned without any padding,
2. Data type characteristics are predefined (see table below), and
3. Allinteger quantities are sent in network byte order (i.e, big endian).

XRootD Type | Sign Bit Length | Bit Alignment | Typical Host Type
kXR chars8 unsigned 8 8 unsigned char
kXR untl6 unsigned | 16 16 unsigned short
kKXR int32 signed | 32 32 long’

kXR into64 signed | 64 64 long long

Table 1: XRootD Protocol Data Types

Network byte order is defined by the Unix htons() and htonl() macros for host to
network short and host to network long, respectively. The reverse is defined by
the ntohs() and ntohl() macros. Many systems do not define the long long
versions of these macros. XRootD protocol requires that the POSIX version of
long long serialization be used, as defined in the following figures. The OS-
dependent isLittleEndian() function returns true if the underlying hardware
using little endian integer representation.

unsigned long long htonll (unsigned long long x)
{unsigned long long ret val;
if (isLittleEndian())

{*((unsigned long *) (&ret val) + 1) =

htonl (* ((unsigned long *) (&x)));
*(((unsigned long *) (&ret val))) =

htonl (*(((unsigned long *) (&x))+1));
} else {
*((unsigned long *) (&ret val)) =

htonl (* ((unsigned long *) (&x)));
*(((unsigned long *) (&ret val)) + 1) =

htonl (*(((unsigned long *) (&x))+1));

}

return ret val;

}i

Figure 1: POSIX Host to Network Byte Order Serialization

1 As of this writing, the long type has taken on several meanings for 64-bit architectures. Some
machines define a long to be 64-bits and int 32-bits while some others reverse the definition.

XRootD Protocol Version 5.1.1 Page: 9

Protocol

unsigned long long ntohll (unsigned long long x)
{unsigned long long ret val;
if (isLittleEndian{())

{*((unsigned long *) (&ret val) + 1) =
ntohl (*((unsigned long *) (&x)));
*(((unsigned long *) (&ret val))) =
ntohl (* (((unsigned long *) (&x))+1));
} else {
*((unsigned long *) (&ret val)) =
ntohl (*((unsigned long¥*) (&x)));
(((unsigned long) (&ret val)) + 1) =
ntohl (* (((unsigned long*) (&x))+1));

}

return ret val;

}i

Figure 2: Network and Host Byte Order Seialization

More compact and efficient, though OS restricted (i.e., Solaris and Linux),
versions of 64-bit network byte ordering routines are given in the following
figure.

#if defined(sparc) || _ BYTE ORDER== BIG ENDIAN
#ifndef htonll

#define htonll (x) x

#endif

#ifndef ntohll

#define ntohll (x) x

#endif

#else

#ifndef htonll

#define htonll(x) _ bswap 64 (x)
#endif

#ifndef ntohll

#define ntohll(x) _ bswap_ 64 (x)
#endif

Figure 3: Network and Host Byte Ordering Macros

XRootD Protocol Version 5.2.0 Page: 10

Client Requests Protocol

2.3 Client Request Format

Requests sent to the server are a mixture of ASCII and binary. All requests, other
than the initial handshake request, have the same format, as follows:

kXR char streamid[2]
kXR:unt16 requestid
kXR char parms[16]
kXR_int32 dlen

kXR char dataldlen]

Where:

streamid
binary identifier that is associated with this request stream. This identifier
should be echoed along with any response to the request.

requestid
binary identifier of the operation to be performed by the server.

parms parameters specific to the requestid.

dlen binary length of the data portion of the message. If no data is present, then
the value is zero.

data data specific to the requestid. Not all requests have associated data. If the
request does have data, the length of this field is recorded in the dlen field.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

2) All XRootD client requests consist of a standard 24-byte fixed length
message. The 24-byte header may then be optionally followed by request
specific data.

3) Stream id’s are arbitrary and are assigned by the client. Typically these
id’s correspond to logical connections multiplexed over a physical
connection established to a particular server.

4) The client may send any number of requests to the same server. The order
in which requests are performed is undefined. Therefore, each request

XRootD Protocol Version 5.2.0 Page: 11

Protocol Client Requests

should have a different streamid so that returned results may be paired up
with associated requests.

5) Requests sent by a client over a single physical connection may be
processed in an arbitrary order. Therefore the client is responsible for
serializing requests, as needed.

XRootD Protocol Version 5.2.0 Page: 12

Client Requests Protocol

2.3.1 Valid Client Requests

Requestid Value Login? Auth? Redirect? Arguments

kXR_auth 3000 y n n authtype, authinfo
KXR_bind 3024 n n n sessid

kXR_chkpoint 3012 y n fhandle, length, offset
kXR_chmod 3002 y y yes mode, path

kXR close 3003 y - n fhandle

KXR_dirlist 3004 y y y path

KXR_endsess 3023 y = n sessid

kXR_fattr 3020 y y y Arguments vary by subcode
kXR_gpfile 3005 y optional y Arguments vary by subcode
kXR_locate 3027 y y y path

kXR_login 3007 n n n userid, token

KXR_mkdir 3008 y y y mode, path

kXR_mv 3009 y y y old_name, new_name
kXR_open 3010 y y y mode, flags, path
kXR_pgread 3030 y - y fhandle, pathid, length, offset
kXR_pgwrite 3026 y - y fhandle, pathid, length, offset
kXR_ping 3011 y n n

kXR_prepare 3021 y y n paths

kXR_protocol 3006 n n n

KXR_query 3001 y y y args

kXR_read 3013 y = y fhandle, pathid, length, offset
kXR_readv 3025 y = y fhandle, pathid, length, offset
KXR_rm 3014 y y y path

KXR_rmdir 3014 y y y path

KXR_set 3018 y y y info

kXR_sigver 3029 y y n signature

KkXR_stat 3017 y = n fhandle

kXR_stat 3017 y y y path

KXR_statx 3022 y y n pathlist

kXR_sync 3016 y = n fhandle

kXR_truncate 3028 y = n fhandle, length
kXR_truncate 3028 y = y path, length

kXR_write 3019 y = y fhandle, pathid, length, offset, dat
kXR_writev 3031 y y n fhandle, length, offset

Table 2: Valid Client Requests

XRootD Protocol Version 5.1.1 Page: 13

Protocol Client Requests

2.3.2 Valid Client Paths

The XRootD server accepts only absolute paths where a path may be specified.
Relative paths should be resolved by the client interface prior to sending them to
XRootD. This means that the interface should handle a virtual “current working
directory” to resolve relative paths should they arise.

Path names are restricted to the following set of characters:
o Letters (upper or lower case),
e Digits (0-9), and
e Special characters: !@#%"_-+=:./

In general, paths may not contain shell meta-characters.
Any path may be suffixed by CGI information. The format corresponds to that
defined in RFC 3875. However, the protocol does not allow URL encoded

characters (i.e. %xx). The meaning of any CGI element that is not specified in this
document is implementation specific.

XRootD Protocol Version 5.2.0 Page: 14

mailto:!@#%^_-+=:./

Client Requests Protocol

2.3.3 Client Recovery from Server Failures

A server failure should be recognized when the server unexpectedly closes its
TCP/IP connection or does not respond for an extended period of time. Should
this happen, the client may recover all operations by treating the termination of
the connection or unresponsiveness as a redirection request (see page 29) to the
initial XRootD server for all streams associated with the closed TCP/IP
connections.

The initial XRootD server is defined as the first manager or the last meta-
manager encountered. In the absence of any manager, the first data server
encountered. See the kXR_protocol request on how to determine a node’s type.

Because many clients are likely to be affected by a server failure, it is important
that clients pace their reconnection to the initial XRootD server. One effective
way to do thisis to use the last three bits of the client’s IP address as the number
of seconds to wait before attempting a reconnection. It is up to the client to
determine either the number of times or the time window in which reconnections
should be attempted before failure is declared. Typical values are 16 attempts or
3 minutes, whichever is longer.

Note that it may not be possible to recover in this way for files that were opened

in update mode. Clients who do not provide proper transactional support
generally cannot recover via redirection for any read/write resources.

XRootD Protocol Version 5.1.1 Page: 15

Server Responses Protocol

24 Server Response Format

All responses, including the initial handshake response, have the same leading
format, as follows:

kXR char streamid[2]
kXR untlé status

kXR int32 xlen

kXR char xtend[xlen]

Where:

streamid
binary identifier that is associated with this request stream corresponding
to a previous request.

status binary status code indicating the request completion state. The next
section describes possible status codes.

xlen binary length of the xtend portion of the message. If no xtend is present,
then the value should be zero.

xtend data specific to the requestid. Not all responses have associated data. If the
response does have data, the length of this field should be present in the
xlen field.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client should appropriately pair responses with requests
using the streamid value.

3) Unsolicited responses are server requests for client configuration changes
to make better use of the overall system. Since these responses do not
correspond to any request, the streamid value has no meaning.

4) Unsolicited responses should be immediately acted upon. They should
not be paired with any previous request.

XRootD Protocol Version 5.2.0 Page: 17

Protocol Server Responses

2.4.1 Valid Server Response Status Codes

The following table lists all possible responses and their arguments.

Status Response Data

kXR _attn Parameters to direct immediate client action
kXR_authmore | Authentication specific data

kXR_error Error number and corresponding ASCII message text
kXR_ok Depends on request (this is predefined to be the value 0)

KXR oksofar | Depends on request

kXR_redirect | Target port number and ASCII host name or URL

kXR status Depends on request

kXR_wait Binary number of seconds & optional ASCII message

kXR_waitresp | Binary number of seconds

Notes
1) Any request may receive any of the previous status codes.

2) The following sections detail the response format used for each status

code.

XRootD Protocol Version 5.2.0

Page: 18

Server Responses Protocol

24.2

kXR_attn Response Format

kXR char pad[2]

kXR untl6é kXR attn

kXR int32 plen

kXR int32 actnum

kXR char parms[plen-4]

Where:

plen

plen

two bytes of padding required by the standard response format. These
two bytes can be ignored for this particular response code.

binary length of the parms portion of the message (i.e., the subsequent
bytes).

actnum

binary action code describing the action that the client is to take. These

are:

kXR_asyncms - The client should send the indicated message to the
console. The parms contain the message text.

kXR_asynresp - The client should use the response data in the message
to complete the request associated with the indicated
streamid.

parms parameter data, if any, that is to steer client action.

Notes

1)

2)

3)

All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

Servers use the kXR_attn response code to optimize overall system
performance and to notify clients of any impending events. All responses
except for kXR_asynresp, do not correspond to any client request and
should not be paired up with any request.

When kXR_attn is received, the client should perform the requested
action and indicated by the actnum value.

XRootD Protocol Version 5.2.0 Page: 19

Protocol Server Responses

2.4.2.1 kXR_attn Response for kXR_asyncms Client Action

kXR char pad[2]

kXR untl6é kXR attn
kXR int32 mlen

kXR int32 kXR asyncms
kXR char msg[mlen—-4]

Where:
mlen binary length of the following action code and message.

msg message to be sent to the terminal. The mlen value, less four, indicates the
length of the message. The ending null byte (“\0) should be transmitted
and included in the message length.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system
performance and to notify clients of any impending events. This response
does not correspond to any client request and should not be paired up
with any request.

3) When kXR_attn is received with the kXR_asyncms action code, the
following options should be implemented:

a. simply write the indicated message to the terminal, or
b. allow the application to register a callback to capture the message.

XRootD Protocol Version 5.2.0 Page: 20

Server Responses Protocol

2.4.2.2 kXR_attn Response for kXR_asynresp Client Action

kXR char pad[2]

kXR untl6é kXR attn
kXR int32 plen

kXR int32 kXR asynresp
kXR char reserved[4]
kXR char streamid[2]
kXR untl6é status

kXR int32 dlen

kXR char datal[dlen]

Where:
plen binary length of the following action code and response.

streamid
stream identifier associated with a previously issued request that received
a kXR_waitresp response.

status binary status code indicating how the request completed. The codes
definitions are identical as to those described for synchronous responses.

dlen binary length of the data portion of the message. If no data is present, then
the value is zero.

data data specific to the request. Not all responses have associated data. If the

response does have data, the length of this field is recorded in the dlen
field.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

2) Servers use the kXR_attn response code to optimize overall system
performance and to notify clients of any impending events.

3) Unlike other asynchronous events, this response is associated with a
previous request and the response data ould be used to either continue or
complete that request, based on the status value.

4) The rlen-dlen should always equal a value of 16.

XRootD Protocol Version 5.2.0 Page: 21

Server Responses Protocol

24.3

kXR_authmore Response Format

kXR char streamid[2]
kXR untl6é kXR authmore
kXR int32 dlen

kXR char datal[dlen]

Where:

streamid

dlen

data

Notes

1Y)

2)

3)

4)

5)

binary identifier that is associated with this request stream corresponding
to a previous request.

binary length of the data portion of the message (i.e., the subsequent
bytes).

data, if any, required to continue the authentication process.

All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data ty pes are treated as unsigned
values. All reserved fields should be initialized to binary zero.

Since requests may be completed in any order, the ordering of responses
is undefined. The client should appropriately pair responses with requests
using the streamid value.

The kXR_authmore response code is issued only for those authentication
schemes that require several handshakes in order to complete (e.g., .x500).
When a kXR_authmore response is received, the client should call the
appropriate authentication continuation method and pass it data, if
present. The output of the continuation method should be sent to the
server using another kXR_auth request. This handshake continues until
either the continuation method fails or the server returns a status code of
kXR_error or kXR_ok.

Refer to the description of the security framework for detailed
information.

XRootD Protocol Version 5.2.0 Page: 23

Protocol Server Responses

244 KkXR_error Response Format

kXR char streamid[2]
kXR untlé kXR error

kXR int32 dlen

kXR int32 errnum

kXR char errmsgl[dlen-4]

Where:

streamid
binary identifier that is associated with this request stream corresponding
to a previous request.

dlen binary length of the data portion of the message (i.e., the subsequent
bytes).

errnum
binary error number indicating the nature of the problem encountered
when processing the request.

errmsg
human-readable null-terminated message that describes the error. This
message may be displayed for informational purposes.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

2) Since the error message is null-terminated, dlen includes the null byte in
its count of bytes that were sent.

3) Since requests may be completed in any order, the ordering of responses
is undefined. The client should appropriately pair responses with requests
using the streamid value.

XRootD Protocol Version 5.2.0 Page: 24

Server Responses

2.4.4.1 Error Codes and Recovery Actions

Protocol

kXR_Error Redirector| Server
Status Code in errnum | Meaning Recovery [Recovery
kXR ArgInvalid A request argument was not valid n/a n/a
kXR_ArgMissing Required request argument was not provided n/a n/a
kXR_ArgTooLong A request argument was too long (e.g., path) n/a n/a
kXR_AttrNotFound The requested file attribute does not exist n/a n/a
kXR_AuthFailed Authentication failed H H
kXR_BadPayload The request arguments were malformed n/a n/a
kXR_Cancelled The operation was cancelled by the system n/a n/a
kXR_ChkSumErr The checksum does not match n/a n/a
kXR_Conflict Request cannot be executed due to a conflict n/a n/a
kXR_DecryptErr Data could not be decrypted n/a n/a
kXR FileLocked File is locked, open request was rejected n/a n/a
kXR_FileNotOpen File if not open for the request (e.g., read) n/a n/a
kXR_FSError The file system indicated an error n/a A
kXR_fsReadOnly The file system is marked read-only. n/a n/a
kXR_Impossible The request cannot be executed due to exigent n/a n/a
conditions
kXR_inProgress Operation already in progress B B
kXR_InvalidRequest | Therequest code is invalid n/a n/a
kXR_IOError An I/O error has occurred n/a A
kXR isDirectory Object being opened with kXR_openis a n/a n/a
directory
kXR_ItExists Cannot create new object as it already exists n/a n/a
kXR_NoMemory Insufficient memory to complete the request C B
kXR_NoSpace Insufficient disk space to write data n/a n/a
kXR_NotAuthorized Client is not authorized for the request n/a E
kXR NotFile Object being opened with kXR_open is not a n/a n/a
file.
kXR_NotFound The requested file was not found n/a D
kXR noReplicas No more replicas exist. n/a n/a
kXR_noserver There are no servers available to process the F n/a
request
kXR_overQuota Space quota exceeded n/a n/a
kXR_overloaded Server is overloaded C D
kXR_ReqTimedOut Request could not be completed in time n/a D
kXR_ServerError An internal server error has occurred C A
kXR_SigVerErr Request signature could not be verified G G
kXR TimerExpired Special return code used for cache directives n/a m/a
kXR_TooManyErrs Request has excessive errors to continue n/a D
kXR_TLSRequired Request requires a TLS connection n/a n/a
kXR_Unsupported The request is valid but not supported n/a E

XRootD Protocol

Version 5.2.0

Page: 25

Protocol Server Responses

A. Go back to the redirector and ask for a different server. kKXR_refresh
should not be turned on. The “tried=" CGI value should indicate the
hostname of the failing server.

B. Generally, this represents a programming error. However, should an
operation subject to a callback response be retried prior to the callback,
this status code may be returned. Clients should honor server’s callback
requests and wait for a callback response. Therefore, this error can be
ignored as long as a callback is outstanding. Otherwise, it should be
treated as a fatal error.

C. If the redirector is replicated, a different redirector should be tried. If all
redirectors provide the same response, a fatal error should be reported. In
the case of intermediate redirectors (i.e., a redirector transferring the
request to another redirector), the recovery may be attempted by treating
the intermediate as a server and performing the action outline in A.

D. Goback to the redirector and ask for a different server. kXR_refresh
should be turned on. The “tried=" CGI value should indicate the hostname
of the failing server. This should normally be done only once.

E. If the redirector is a meta-manager or is virtual (i.e. actually a metalink)
then go back to the redirector and ask for a different server. The “tried="
CGI value should indicate the hostname of the failing server. The
kXR _refresh should not be turned on. For kXR_NotAuthorized, recovery
should be attempted no more than three times.

F. If the redirector is virtual (i.e. actually a metalink), the follow the actions
listed under E. Real redirectors have a real-time view of all available
resources and the inability to allocate a resource indicates that none are
useable for a request. Retrying the request is highly likely to be ineffective.
Virtual redirectors only have a static view of resources and cannot
determine if using another resource will succeed without actually trying
to use that resource. Thus, all failures are retryable.

G. Signature verification errors due to transport corruption are retryable as
such corruptions are transient. There isno way to determine if a failure is
due to corruption or active compromise. The request should be retried
once or twice.

H. Authentication failures may be due to server missconfiguration. If
another server or redirector is available, the operation may be retried.

XRootD Protocol Version 5.2.0 Page: 26

Server Responses Protocol

245 kXR_ok Response Format

kXR char streamid[2]
kXR untl6é kXR ok
kXR int32 dlen

kXR char datal[dlen]

Where:

streamid
binary identifier that is associated with this request stream corresponding
to a previous request.

dlen binary length of the data portion of the message (i.e., the subsequent
bytes).

data result, if any, of the corresponding request.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data ty pes are treated as unsigned
values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client should appropriately pair responses with requests
using the streamid value.

3) The kXR_ok response indicates that the request fully completed and no
additional responses should be forthcoming.

XRootD Protocol Version 5.1.1 Page: 27

Protocol Server Responses

2.4.6

kXR_oksofar Response Format

kXR char streamid[2]
kXR untl6é kXR oksofar
kXR int32 dlen

kXR char datal[dlen]

Where:

streamid

dlen

data

Notes

1Y)

2)

3)

4)

5)

binary identifier that is associated with this request stream corresponding
to a previous request.

binary length of the data portion of the message (i.e., the subsequent
bytes).

result, if any, of the corresponding request.

All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data ty pes are treated as unsigned
values. All reserved fields should be initialized to binary zero.

Since requests may be completed in any order, the ordering of responses
is undefined. The client should appropriately pair responses with requests
using the streamid value.

The kXR_oksofar response indicates that the server is providing partial
results and the client should be prepared to receive additional responses
on the same stream. This response is primarily used when a read request
would transmit more data than the internal server segment size.

Sending requests using the same streamid when a kXR_oksofar status
code has been returned may produced unpredictable results. A client
should serialize all requests using the streamid in the presence of partial
results.

Any status code other than kXR_oksofar indicates the end of transmission

XRootD Protocol Version 5.2.0 Page: 28

Server Responses Protocol

2.4.7 KkXR_redirect Response Format

kXR char streamid[2]

kXR untl6é kXR redirect

kXR int32 dlen

kXR int32 port | Oxffffffff | < 0

kXR char host[?[fcgi]l[?1lcgil] [dlen-4] | url

Where:

streamid

dlen

port

host

fegi

binary identifier that is associated with this request stream corresponding
to a previous request.

binary length of the data portion of the message (i.e., the subsequent
bytes).

binary port number to which the client should connect. If the value is zero,
the default XRootD port number should be used. If the value is negative,
then the text after port contains a standard URL that should be used to
effect a new connection. This should only occur if the client has indicated
that URL redirection responses are acceptable during the most recent
kXR_login request to the redirecting server. See the usage notes when
oxffffffff should be used as a negative port number.

ASCII name of the to which the client should connect. The host does not
end with a null (\0) byte. The host should be interpreted as a standard
URL if port is negative (see above). See the usage notes describing the
format of host.

optional ASCII CGI string that, when present, should be added to the end
of any existing CGI information appened to the file name? associated with
the operation being redirected. The fcgi, if present, is separated from the
host by a single question mark. The fcgi does not end with a null (\0) byte
but may end with a question mark (see token below). Therefore, fcgi may
never contain a question mark. See the usage notes for more information.

2In the case of kXR_mv, two file names are present. The opaque information should be added to

the second of the two file names.

XRootD Protocol Version 5.1.1 Page: 29

Protocol Server Responses

legi

url

Notes
1)

2)

3)

4)

optional ASCII CGI string that, when present, should be delivered to the
new host during the login phase as additional login parameters. However,
if an established connection to the specified host already exists it may be
re-used without a login. The Icgi, if present, is separated from the host by a
two question marks. The first question mark may be followed by fcgi
information. If none is present, another question mark immediately
follows the first one. The Icgi does not end with a null (\0) byte. See the
usage notes for more information.

when a client indicates that it supports multi-protocol redirects, the server
may respond with an actual url. In this case, the port valueis set to -1.

All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

The host, either in its shortened form or in a URL redirect, may either be
an FQDN or an IP address. IP addresses should be in IPv6 bracket format
or in IPv4 octet format. However, using IP addresses should be avoided as
they conflict with NAT devicess common in frwewalled sites, Kubernetes
clusters using virtual networks, and addresses are not usually present in a
host certificates SAN extension which makes TLS connection impossible.
CGI information (i.e. fcgi and Icgi) is a stream of 7-bit clean (ASCII)
characters that encode zero or more assertions. These assertions are
separated by the ‘&’ character. Assertions are key-value pairs in the form
key = value. Both key and value text must not contain “?’, ‘&’ or ‘=’
characters. Hex encoding of characters (i.e. sequences such as % <hex>
<hex>, where <hex> is a character in 0123456789abcdef) should not be
supported. When parsing a CGI string, any key that is not understood
should be ignored. Keys that start xrd. are reserved. Implementations are
free to include other keys. It is recommended for keys to start with a
reverse-DNS name under the developer's control; e.g., (org.example.my -
new-key). For historic reasons a server should process a login string (i.e.
lcgi) that starts with the *?” character by ignoring that character and
processing the remaining login string.

Since requests may be completed in any order, the ordering of responses
is undefined. The client should appropriately pair responses with requests
using the streamid value.

XRootD Protocol Version 5.2.0 Page: 30

Server Responses Protocol

5) After 256 redirect responses within 10 minutes on the same logical
connection, the client should declare an internal system error since it is
obvious that effective work is not being performed.

6) The client should be prepared to handle a redirect response at any time. A
redirect response requires that the client

a. Decompose the response to extract the port number, host name, and
possible token value.

b. Possibly close the connection of the current host, if the current host
is a data server and this is the last logical connection to the server.
Otherwise, if this is the first load-balancing server encountered in
the operation sequence, the connection should remain open since a
load-balancing server always responds with a redirect.

c. Establish a new logical connection with the indicated host at the
specified or default port number. If a physical connection already
exists and is session compatible with the new logical connection;
the existing physical connection should be reused and the next step
(i.e. handshake and login) should be skipped.

d. Perform the initial handshake, login with token (see kXR_login
description), and authentication (see kXR_auth description).

e. If the redirection occurred for a request using a file handle (i.e.,
fhandle) then a new file handle should be obtained.

i. AkXR_open request should be issued using the same file
name and options as was originally used.

ii. The returned file handle should be used for the request that
is to be re-issued as well as all subsequent requests relating o
the file.

f. Re-issue the request that was redirected.

7) Historically, clients tested the port for the exact value of -1 (i.e. Oxffffffff)
to determine whether a redirect URL or a shortened host specification was
present. This prevented additional information frm being passed in the
port field. To provide backward compatability, a special kXR_login
capability was introduced, kXR_redirflags, that indicates the client simply
checks for a negative value and the low order 31 bits may be used as
redirect flags. Servers should always use -1 unless the client indicates that
it is capable of handling any negative value by setting the kXR_redirflags

capability in the login request.

XRootD Protocol Version 5.1.1 Page: 31

Protocol Server Responses

8) The following redirect flags are defined:

Flag Meaning

kXR_recoverWrts | Write recovery for copy targets is possible at the
server that set this redirect flag.

kXR_collapseRedir | If the redirect target is in the same address group as
the redirecting server, make the target the primary
address for all future contacts for this address

group.

9) Normally, the protocol limits write recovery to the server to which the
write was directed. The kXR_recoverWrts flag allows write recovery to
occur at a different server as long as that server is in the redirect path
leading to a server executing a write operation.

10) A DNS host name may be assigned multiple addresses, each of which isa
different physical endpoint. All servers under that DNS name should be
considered to belong to the same address group. Any server in that
address group may request that one of those servers be designated as the
primary target using the kXR_collapseRedir flag. This option is meant to
support replicated services in which there is a primary leader chosen by
consensus.

11) Opaque data should be treated as truly opaque. The client should not
inspect nor modify the data in any way.

XRootD Protocol Version 5.2.0 Page: 32

Server Responses

2.4.8 kXR_status Response Format

kXR char streamid[2]

kXR untl6é kXR status

kXR int32 resplen (should be >= 16)
kXR unt32 crc3Zc

kXR char streamid[2]

kXR char requestid

kXR char resptype

kXR char reserved[4]

kXR int32 dlen

kXR char infolresplen-16]
kXR char datal[dlen]

Where:

streamid

Protocol

binary identifier that is associated with this request stream corresponding
to a previous request. It is repeated to allow for a quick integrity check of

the streamid before doing more extensive checks.

resplen

binary length of the response portion of the message (i.e., the subsequent

bytes not including any data portion).

crc32c CRC32-C as defined by the IETF RFC 7143 standard (see the notes for
details) of the resplen-sizeof(crc32c) bytes immediately after crc32c. This
means that the data portion, if any, should not be included in the cr32c

calculation.

requestid

identifier of the original request. The requestid+kXR_1stRequest should
equal the original request code.

resptype

binary code identifying the response ty pe. See the subsequent section for

details.

dlen binary length of the data portion of the message, if any. If there is no data
portion then dlen should be zero.

XRootD Protocol

Version 5.1.1

Page: 33

Protocol Server Responses

info optional additional response information whose contents should be
interpreted in the context of the requestid and resptype codes. Refer to each
corresponding request to see how to interpret the info, if present. The
length should be calculated as resplen- kXR_statusBodyLen and should
result in a value >= 0.

data result, if any, of the corresponding request.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client should appropriately pair responses with requests
using the streamid value.

3) The cre32¢ should use the CRC32-C polynomial specified in the IETF RFC
7143 standard. This corresponds to the polynomial Oxledc6f41 or
KRR x P P x T x xS O L

4) When kXR_status is received the client should perform an integrity check
on the response, as follows:

a. Verify that the two streamid values are identical, and
b. calculate the CRC32C value of the response and verify that it
matches the value sent by the server in crc32c.

5) When an integrity check fails, the only recourse is to close the connection
and start with a new connection. The reason is that there is no way to
know how much and what kind of data may be in transit, should any of
the length fields be corrupted. Be aware that closing a connection with
active requests causes those requests to be terminated.

XRootD Protocol Version 5.2.0 Page: 34

Server Responses Protocol

2.4.8.1 Valid ResponseTypes
The resptype codes as defined in struct ServerResponseStatus are:

resptype datalen Explanation

kXR FinalResult >= 0 | Request completed as indicated in the

response.

kXR PartialResult

\Y
Il

Request has partially completed as indicated.

kXR ProgressInfo

Il
Il
of o

Request is ongoing thisis a progress report
only.

Notes
1)

2)

3)

4)

5)

The presence of info and data is determined by the particular request being
performed. Refer to the requests returning kXR_status for details.
Sending requests using the same streamid when a kXR_status with a
PatrialResult or ProgressInfo restype code has been returned may
produce unpredictable results. A client should serialize all requests using
the streamid until a FinalResult restype is returned by the request.
Currently, only kXR_gpfile, kXR_pgread and kXR_pgwrite return
kXR_status. However, clients implementing this version of the protocol
should be implemented to handle any request returning kXR_status.
Requests employing kXR_status should never return kXR_ok and
kXR_oksofar as these are essentially subsumed by kXR_status. The use of
other response types is allowed.

When kXR_PartialResult or kXR_ProgressInfo is received, the client
should reset the wait timeout to its original value.

XRootD Protocol Version 5.1.1 Page: 35

Protocol Server Responses

249 kXR_wait Response Format

kXR char streamid[2]

kXR untl6é kXR wait

kXR int32 dlen

kXR int32 seconds

kXR char infomsg[dlen-4]

Where:

streamid
binary identifier that is associated with this request stream corresponding
to a previous request.

dlen binary length of the data portion of the message (i.e., the subsequent
bytes).

seconds
maximum binary number of seconds that the client needs to wait before
re-issuing the request.

infomsg
human-readable message that describes the reason of why the wait is
necessary. The message does not end with a null (\0) byte. This message
may be displayed for informational purposes.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client should appropriately pair responses with requests
using the streamid value.

3) The client should wait the indicated number of seconds and retry the
request.

4) Nothing prohibits the client from waiting for less time than the indicated
number of seconds.

XRootD Protocol Version 5.2.0 Page: 36

Server Responses Protocol

2.4.10 kXR_waitresp Response Format

kXR char streamid[2]
kXR untl6é kXR waitresp
kXR int32 4

kXR int32 seconds

Where:

streamid
binary identifier that is associated with this request stream corresponding
to a previous request.

seconds
estimated maximum binary number of seconds that the client needs to wait
for the response.

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

2) Since requests may be completed in any order, the ordering of responses
is undefined. The client should appropriately pair responses with requests
using the streamid value.

3) The client should wait the indicated number of seconds for the response.
The response should be returned via an unsolicited response (kXR_attn
with kXR_asynresp) at some later time which may be earlier than the time
indicated in seconds. When the response arrives, the client should use the
response data to complete the request that received the kXR_waitresp.

4) Nothing prohibits the client from waiting for different time than the
indicated number of seconds. Generally, if no response is received after at
least seconds have elapsed; the client should treat the condition as a fatal
error.

XRootD Protocol Version 5.1.1 Page: 37

Server Responses

Protocol

2.5 Binary Definitions of Status, Error and Response Subcodes

2.5.1 Response Status Codes

Status Code Value

kXR ok 0
kXR_oksofar 4000
kXR_attn 4001
kXR_authmore 4002
kXR_error 4003
kXR_redirect 4004
kXR_status 4007
kXR_wait 4005
kXR_waitresp 4006

2.5.2 kXR_attn Subcodes

kXR_attn Subcode Value
kXR_asyncms 5002
kXR_asynresp 5008

2.5.3 kXR_redirect Subcodes

kXR _redirect Subcode Value
kXR_recoverWrts 0x00001000
kXR_collapseRedir 0x00002000

2.5.4 kXR_ status Subcodes and Other Values

kXR_status subcode in XrdProto:: Value

kXR_FinalResult 0x00

kXR_PartialResult 0x01

kXR_ProgressInfo 0x02

kXR_status value in XrdProto:: Value

kXR_statusBodyLen 16

XRootD Protocol Version 5.2.0 Page: 39

Protocol

2.5.5 Error Codes

Server Responses

Error Value Corresponding POSIX errno Value
kXR_ArgInvalid 3000 EINVAL
kXR_ArgMissing 3001 EINVAL
kXR_ArgTooLong 3002 EN AMETOOLONG
kXR_FileLocked 3003 EDEADLK
kXR_FileNotOpen 3004 EBADF
KXR_FSError 3005 ENODEV
kXR_InvalidRequest 3006 EBADRQC
KXR_IOError 3007 EIO
kXR_NoMemory 3008 ENOMEM
kXR_NoSpace 3009 ENOSPC
kXR_NotAuthorized 3010 EACCES
kXR_NotFound 3011 ENOENT
kXR_ServerError 3012 EFAULT
kXR_Unsupported 3013 ENOTSUP
kXR_noserver 3014 EHOSTUNREACH
kXR_NotFile 3015 ENOTBLK
kXR_isDirectory 3016 EISDIR
kXR_Cancelled 3017 ECANCELED
KXR_ItExists 3018 EEXIST
KXR_ChkSum Err 3019 EDOM
kXR_inProgress 3020 EINPROGRESS
kXR_overQuota 3021 EDQUOT
kXR_SigVerErr 3022 EILSEQ
kXR_DecryptErr 3023 ERANGE
kXR_Overloaded 3024 EUSERS
kXR_fsReadOnly 3025 EROFS
kXR_BadPayload 3026 EINVAL
KXR_AttrNotFound 3027 ENOATTR
KXR_TLSRequired 3028 EPROTOTYPE
kXR_noReplicas 3029 EADDRNOTAVAIL
kXR_AuthFailed 3030 EAUTH (preferable) or EBADE
kXR_Impossible 3031 EIDRM
kXR_Conflict 3032 ENOTTY
kXR_TooManyErrs 3033 ETOOMANYREFS
kXR_ReqTimed Out 3034 ETIMEDOUT
KXR_TimerExpired 3035 ETIME

XRootD Protocol Version 5.2.0 Page: 40

TLS

3 Transport Layer Security (TLS) Support

The XRootD protocol supports TLS mode connections in two explcit ways:
1) client request using the kXR_protocol request, and
2) server request using the kXR_protocol response.

This mechanism provides several features:

e Asingle port can be used for TLS and non-TLS connections.

e Therequest channel can be split from the data channel using the
kXR_bind request so that control information flows on a TLS connection
while data flows on a non-TLS connection. Such an arrangement may
significantly improve performance.

e Thenumber of interactions can be reduced when a connection needs to
use TLS.

e The server may independently enforce TLS requirements in for broad
categories:

o logins and all subsequent interactions,
o all post-login interactions,

o third party copy requests, and

o data transfers.

Currently, once a connection switches to TLS mode it cannot switch back. This is
not a protocol requirement but a practical side-effect of current TLS
implementations that buffer an inditerminant amount of data making it
problematic to deterministically switch modes. However, the XRootD protocol is
sufficiently open to allow such switches if and when the TLS protocol can do so
in the future.

A server isnot required to support TLS. If it does, it should follow the protocol
specifications described in the kXR_protocol and kXR_bind requests.

TLS may be considered a replacement for request signing in most circumstances.
However, for certain workflows, request signing may offer better performance.
Be ware, that XRootD request signing, as defined, does not protect data while
TLS, when used for data, does so.

XRootD Protocol Version 5.2.0 Page: 41

TLS

3.1 Client-Server interactions to unilaterally use TLS

The client should connect to the server using a non-TLS connection and
send the handshake packet.

The client should then send a kXR_protocol request indicating that it
wants to use TLS. For reduced latency, the handshake and the
kXR_protocol request may be sent together.

If the server supports TLS it should indicate in the kXR_protocol
response that the connection will be switched to use TLS after the
response is sent.

The client should check if the server switched the connection to use TLS
and do the same if so indicated.

All communications from then on use TLS.

3.2 Client-Server interactions to use TLS only when required

The client should connect to the server using a non-TLS connection and
send the handshake packet.

The client should then send a kXR_protocol request indicating that it is
able to use TLS. For reduced latency, the handshake and the
kXR_protocol request may be sent together. In the kXR_protocol request
the client should also indicate the expected next operation (i.e. login, data
transfer, or third party copy).

If the server supports TLS it should indicate in the kXR_protocol
response that the connection has been switched to use TLS if the client’s
subsequent operation requires TLS. Note that it is also possible for the
server to indicate that TLS is required after the kXR_login request (i.e.
login does not require TLS).

The client should check if the server switched the connection to use TLS
and do the same if so indicated. If the next reqest is a kXR_login and the
server indicated that TLS is not required until after the login, the client
should defer switching the connection to TLS until after the login and all
authentication interactions (i.e. kKXR_auth requests).

XRootD Protocol Version 5.2.0 Page: 42

kXR_auth

4 Server Request Format

4.1 kXR_auth Request

Purpose: Authenticate client’s username to the server.

Request Normal Response

kXR char streamid[2] kXR char streamid[2]
kXR untl6é kXR auth kXR untl6é kXR ok

kXR char reserved[12] kXR int32 0

kXR char credtypel4]
kXR int32 credlen

kXR char cred[credlen]

Where:

streamid
binary identifier that is associated with this request stream. This identifier
should be echoed akXR_int32 with any response to the request.

reserved
area reserved for future use and should be initialized to null characters
(e, "\0).

credtype
the first four characters of the protocol name. If the protocol name is less

than four characters, the name should be null terminated.

credlen
binary length of the supplied credentials, cred.

cred credentials used to provide authentication information.

XRootD Protocol Version 5.2.0 Page: 43

kXR_auth

Notes

1) All binary fields are transmitted in network byte order using an explicit
length. The kXR_char and kXR_unt16 data types are treated as unsigned
values. All reserved fields should be initialized to binary zero.

2) Authentication credentials may be supplied by many means. The common
mechanism used by XRootD is to use the classes in the libXrdSec.so

library. See the “ Authentication & Access Control Configuration

Reference” for more information.

3) Refer to the description of the security framework on how a client

authenticates to an XRootD server.

Binary Definitions

Request Modifiers Value Explanation
kXR _auth 3000 Perform authenication
XRootD Protocol Version 5.2.0 Page: 44

kXR_bind

4.2 kXR_bind Request

Purpose: Bind a socket to a pre-existing session.

Request Normal Response

kXR char streamid[2] kXR char streamid[2]
kXR untl6é kXR bind kXR untl6é kXR ok

kXR char sessid[1l6] kXR int32 1

kXR int32 O kXR char pathid
Where:

streamid

sessid

pathid

Notes
1)

2)

3)

4)

5)

6)

binary identifier that is associated with this request stream. This identifier
should be echoed along with any response to the request.

session identifier returned by a previous kXR_login request.

socket identifier associated with this connection. The pathid may be used
in subgsequent kXR_read, kXR_readv, and kXR_write requests to
indicate which socket should be used for a response or as a source of data.

All binary fields are transmitted in network byte order using an explicit
length. The