

Open File System & Open Storage System

Configuration Reference

11 April 2024

Release 5.6.0 and above

Andrew Hanushevsky

ii 11-April-2024 Configuration

©2003-2024 by the Board of Trustees of the Leland Stanford, Jr., University

All Rights Reserved

Produced under contract DE-AC02-76-SFO0515 with the Department of Energy
This code is open-sourced under a GNU Lesser General Public license.

For LGPL terms and conditions see http://www.gnu.org/licenses/

http://www.gnu.org/licenses/

Configuration Contents

Configuration 11-April-2024 iii

1 Introduction.. 5

2 Common ofs Configuration Directives 7

2.1 authorize ...7

3 Esoteric ofs Configuration Directives 9

3.1 authlib ...9

3.2 chkpnt ...11

3.3 ckslib ...13

3.4 cksrdsz ..15

3.5 cmslib ..16

3.6 crmode ..17

3.7 ctllib...19

3.8 dirlist ...20

3.9 forward ...21

3.10 maxdelay...23

3.11 notify ...25

3.12 notifymsg ..27

3.12.1 Default Event Notification Messages .. 29

3.13 osslib ...30

3.14 persist ..33

3.15 preplib ...36

3.15.1 Generic Prepare Plug-in .. 37

3.15.2 Generic Prepare Program Execution ... 41

3.15.3 Program Responses.. 42

3.15.4 Program Generated Notifications.. 43

3.16 tpc..45

3.16.1 Redirecting TPC requests.. 49

3.16.2 The TPC Script .. 49

3.16.3 Third Party Copy Using Delegated Credentials...................................... 50

3.17 trace ...51

3.18 xattr ...53

3.19 xattrlib ...54

4 Common oss Configuration Directives 55

4.1 alloc ...55

4.2 defaults ...57

4.3 export ..63

4.4 localroot ..65

Contents Configuration

iv 11-April-2024 Configuration

4.5 remoteroot .. 66

4.6 rsscmd ... 67

4.7 space (definition).. 69

4.7.1 Oss Space Explained .. 71

4.7.2 Using Mount Verification ... 73

4.8 space (assignment) ... 74

5 Esoteric oss Configuration Directives.................................... 77

5.1 fdlimit ... 77

5.2 maxsize ... 78

5.3 memfile ... 79

5.4 namelib ... 81

5.5 spacescan .. 82

5.7 stagecmd ... 83

5.8 stagemsg ... 85

5.8.1 Default Stage Request Message (stagemsg) ... 87

5.8.2 The Stage Cancel Message .. 88

5.8.3 The Stage Query Message ... 88

5.9 statlib .. 89

5.10 trace... 91

5.11 usage ... 93

5.12 xfr .. 95

6 Enabling Mult-Tiered Storage (MTS) 97

6.1 Special MTS Files.. 98

7 Opaque Information.. 99

7.1 ofs OPIDs .. 100

7.1.1 lcl... 100

7.1.2 posc... 101

7.2 oss OPIDs.. 102

7.2.1 asize .. 102

7.2.2 cgroup .. 103

7.2.3 lcl... 104

7.2.4 sprty ... 105

8 Virtual Extended Attributes .. 107

8.1 Information returned for xroot.space .. 107

8.2 Information returned for xroot.xattr ... 109

9 Document Change History .. 111

Configuration Introduction

Configuration 11-April-2024 5

1 Introduction

This document describes Scalla configuration directives for the Open File System

and the Open Storage System components.

Configuration directives for each component come from a configuration file. The

xrootd structure requires that all components read their directives from the same

configuration file. This is the configuration file specified when xrootd was started

(see the –c option xrootd option). This is possible because each component is

identified by a unique 3-letter prefix. This allows a common configuration file to be

used for the whole system.

The particular components that need to be configured

are the file system plug-in (ofs) and the storage system

plug-in (oss). The relationship between xrootd and the

plug-ins is shown on the left. The protocol driver (xrd)

runs the xroot protocol which, in turn, utilizes the file

system plug-in that, itself, relies on the storage system

plug-in. Collectively, this is called xrootd, the

executable that encapsulates all of the components.

The prefixes documented in this manual are listed in the following table. The all

prefix is used in instances where a directive applies to more than one component.

Records that do not start with a recognized identifier are ignored. This includes blank

record and comment lines (i.e., lines starting with a pound sign, #).

Prefix Component
ofs Open File System coordinating acc, cms, & oss components
oss Open Storage System (i.e., storage system implementation)
all Applies the directive to the above components.

Refer to the manual “Configuration File Syntax” on how to specify and use

conditional directives and set variables. These features are indispensable for

complex configuration files usually encountered in large installat ions.

Configuration Common ofs Directives

Configuration 11-April-2024 7

2 Common ofs Configuration Directives

2.1 authorize

ofs.authorize

Function

Enable the access control, acc, component.

Parameters

None.

Defaults

 The access control component is normally disabled.

Notes

1) When the acc component is disabled, all uses have the same access rights

to directories and files as is afforded to the user running xrootd. Because

of this, xrootd should never be executed with superuser (i.e., root)

privileges.

2) Refer to the “xrootd Authentication and Authorization Reference” on how

to configure the access control component.

Example
 ofs.authorize

Configuration Esoteric ofs Directives

Configuration 11-April-2024 9

3 Esoteric ofs Configuration Directives

3.1 authlib

ofs.authlib [++] path [parms]

Function

Specify the location of the file system authorization interface layer.

Parameters

++ The specified plug-in should stack on top of the existing plug-in or default. A

stacked plug-in cannot be overridden by a subsequent directive.

path The absolute path to the shared library that contains an implementation of the

authorization interface that ofs is to use to control file access for file system

specific operations (e.g., open, close, read, write, rename, etc).

parms Optional parameters to be passed to the authorization object creation

function.

Defaults

A built-in minimal implementation is enabled for use when the authorize

directive is specified.

Notes

1) The authorization interface is defined in the XrdAccAuthorize.hh include

file. Refer to this file on how to create a custom authorization algorithm.

2) You must specify the authorize directive in order to enable the

authorization interface.

Example
 ofs.authlib /opt/xrootd/lib/libAuth.so

Configuration Esoteric ofs Directives

Configuration 11-April-2024 11

3.2 chkpnt

ofs.chkpnt [disable | enable] [cprerr {makero | stopio}]

 [maxsz size[k | m | g]] [path path]

Function

Specify checkpoint parameters.

Parameters

disable

 Disables the processing of checkpoint requests. This is the default when path

is rooted in /tmp.

enable

 Enables the processing of checkpoint requests. This is the default unless path

is rooted in /tmp; in which case disable becomes the default. However, when

enable is actually specified, path is allowed to be rooted in /tmp.

cprerr Specified the disposition of a file that could not be restored from a

checkpoint. The options are:

 makero - makes the file read/only.

 stopio - makes the file inaccessible either for reading or writing. This is the

 default.

maxsz size[k | m | g]

 Specifies the maximum number of modified bytes a checkpoint file may hold.

Specify for size a value no less than 10m. The value may be suffixed by k, m,

or g to scale size by 210, 220, or 230, respectively. The default is 10m.

path path

 Specifies the absolute path of the directory where checkpoint files are to be

placed. The path is suffixed by the instance name (-n command option), if any,

and “chkpnt” as additional directory components. The default path is

“adminpath[/name]/chkpnt”. The path is created if it does not exist. See the

notes on how to choose an appropriate path.

Esoteric ofs Directives Configuration

12 11-April-2024 Configuration

Defaults
ofs.chkpnt enable cpprerr stopio maxsz 10m

 path adminpath[/name]/chkpnt

Notes

1) You should choose a checkpoint directory path that is robust and has

sufficient space to hold the expected number of checkpoint files of the

given or default size. Make sure that the default is appropriate.

2) Checkpoint directories rooted in /tmp are not appropriate and this is why

checkpoint processing is disabled by default if this is the case unless you

explicitly specify enable.

3) Active checkpoint files created in this directory are suffixed with “.ckp”.

Checkpoint files that could not be used to restore a file because of data

corruption have a suffix of “.ckperr”.

4) The system automatically restores files with any active checkpoints during

initialization. If a checkpoint file cannot be used to restore a file during

normal processing or during initialization, the log file should contain the

reasons for the failure. The active checkpoint is then renamed and the

file’s accessibility is changed as indicated by the cprerr option.

5) Files that could not be restored should be replaced with backup copies.

You can always determine which file a checkpoint targets by either

a. getfattr -d ckpfile (displays [...]xrdckp_srclfn="target_lfn”) or

b. strings ckpfile | grep “file://” (displays “ file:///taget_lfn”).

6) Use the getfattr command only if the file system supports extended file

attributes. Otherwise, use the string-grep method. The latter may not

yield the actual target logical file name if the checkpoint file is severely

corrupted.

7) If you decide to change the location of the checkpoint directory you must

make sure there are no active checkpoint files in the old directory. If there

are active checkpoints then you must copy them to the new directory after

shutting down the server.

Example
 ofs.chkpnt cprerr makero maxsz 20m path /raid1/ckpdata

Configuration Esoteric ofs Directives

Configuration 11-April-2024 13

3.3 ckslib

ofs.ckslib {digest | * | = | ++} path [parms]

Function

Specify a plug-in for checksum management or calculation.

Parameters

digest A 1- to 15-character name of a checksum digest identifying the checksum

algorithm to be loaded.

* loads a the checksum manager to be used at the storage endpoint (i.e. the

server that holds the file).

= loads a the checksum manager to be used at the manager node (i.e. the

redirector).

++ The specified plug-in should stack on top of the existing checksum manager

plug-in or default. A stacked plug-in cannot be overridden by a subsequent

directive.

path The absolute path to the shared library that contains an implementation of the

checksum management interface (when digest is an asterisk) that ofs uses to

compute checksums or an implementation of a checksum calculation with an

interface used by the checksum manager.

parms Optional parameters to be passed to the checksum object creation function.

Defaults

The adler32, crc32, crc32c, and md5 digests are natively supported. A built-in

manager is used to manage these checksums.

Notes

1) The checksum calculation interface is defined in the XrdCksCalc.hh

include file. Refer to this file on how to create a custom digest.

2) The checksum management interface is defined in the XrdCks.hh include

file. Refer to this file on how to create a custom checksum manager.

Esoteric ofs Directives Configuration

14 11-April-2024 Configuration

3) Four checksums are pre-defined: adler32, crc32, crc32c, and md5. You

may supply a custom implementation for any of these or add one

additional custom digest.

4) The crc32c checksum uses hardware assist should the platform support it

(e.g. AMD and Intel).

5) You may wish to implement platform-specific digests to improve

checksum performance.

6) Normally, checksums are handled by the server that holds the file in

question. If a custom checksum manager can provide the same facilities

running on a manager node, then use an equal sign before path. When

loaded on a manager node, redirection is suppressed and requests for

checksum services are performed on the manager’s node.

7) Use the pss.ckslib directive to specify a checksum plug-in for a proxy.

Example
 ofs.ckslib sha256 /opt/xrootd/lib/libCksSHA256.so

Configuration Esoteric ofs Directives

Configuration 11-April-2024 15

3.4 cksrdsz

ofs.cksrdsz num[k | m | g]

Function

Specify the checksum read siz.

Parameters

num The maximum number of bytes to be read at a time when computing a file’s

checksum. The minimum is 64k and the maximum is 1g. Intermediate

quantities are forced to be multiples of 64k. The quantity may be suffixed by

k, m, or g to scale num by 210, 220, or 230, respectively.

Defaults
ofs.cksrdsz 64m

Notes.

1) The maximum amount of memory consumed when calculating

checksums is determined by the max parameter of the xrootd.chksum

directive multiplied by the value of the ofs.cksrdsz parameter.

Example
 ofs.cksrdsz 32m

Esoteric ofs Directives Configuration

16 11-April-2024 Configuration

3.5 cmslib

ofs.cmslib path [parms]

Function

Specify the location of the cluster management client interface layer.

Parameters

path The absolute path to the shared library that contains an implementation of the

cluster management client interface that ofs is to use handle file system

specific operations (e.g., open, close, read, write, rename, etc).

parms Optional parameters to be passed to the cluster management client object

during configuration.

Defaults

A full-featured built-in implementation is enabled for use by the ofs layer

when the all.role directive is specified.

Notes

1) The cluster manager client interface is defined in the XrdCmsClient.hh

include file. Refer to this file on how to create a custom cluster

management client implementation.

Example
 ofs.cmslib /opt/xrootd/lib/libmyCms.so

Configuration Esoteric ofs Directives

Configuration 11-April-2024 17

3.6 crmode

ofs.crmode dfspec

dfspec: [dirs mspec] [files mspec]

mspec: {common | legacy | [raw] modes}

modes: {octmode | letmode}:{octmode | letmode}

 |---minimum mode--| |---maximum mode--|

octmode: 0000 to 0777 (leading 0 optional)

letmode: {r|-}{w|-}{x|-}[{r|-}{w|-}{x|-}[{r|-}{w|-}{x|-}]]

 |-----user----| |----group----| |----other----|

Function

Specify file access mode restrictions when creating directories or files and

when changing the mode of a directory or file.

Parameters

dfspec When dirs, specifies directory restrictions and when files specifies file

restrictions. At least one must be specified.

mspec Is the actual mode specification. The mode may be specified as a template

name, as an octal pair specifying the 9 available mode bits, or as an alpha

notation pair. The mode consists of a minimum specification followed by a

colon and the maximum allowed mode. The final mode, subject to certain

restrictions, is computed as (userspec | minimum mode) & maximum mode.

common

 For dirs uses the value 0700:0755 or equivalently rwx------:rwxr-xr-x and for

files uses 0600:0644 or equivalently rw-------:rw-r—r--.

legacy

 For dirs and files uses the value 0000:0775 or equivalently ---------:rwxrwxrwx

this mode is the same that has been traditionally used and remains the

default for backward compatibility reasons.

raw Uses the mode specification without applying any safeguards.

Esoteric ofs Directives Configuration

18 11-April-2024 Configuration

Defaults
ofs.crmode dirs legacy files legacy

Notes

1) In absence of the raw specifications, the following adjustments are made

to actual specified mode values:
a. for dirs, 0700 mode is added and the w-bit for other mode is removed,
b. for files, 0600 mode is added and all x-bits are removed as well as the

w-bit for other mode.

2) The combination of minimum and maximum mode should be consistent

in that the maximum mode should not remove any minimum modes.

3) When specifying alpha mode (i.e. rwx) the specification must be made in

groups of three letters as shown. Unspecified triplets default to a value of

three dashes (i.e. 000). Note that the left to right order is mode for user

access, then group access, and finally other access.

4) The highest mode value that can be specified is 0777 (i.e. 9 one bits).

5) It is highly recommended that you switch to common mode as legacy

mode does not offer sufficient protection against problematic mode

settings.

Example
 ofs.crmode dirs common files 0600:0640

 equivalently

ofs.crmode dirs common files rw-:rw-r--

Configuration Esoteric ofs Directives

Configuration 11-April-2024 19

3.7 ctllib

ofs.ctllib [++] path [parms]

Function

Specify the location of the file system dependent control request

implementation (i.e. file system FSctl() and file directed fctl()).

Parameters

++ The specified plug-in should stack on top of the existing plug-in or default. A

stacked plug-in cannot be overridden by a subsequent directive.

path The path to the shared library that contains an implementation of the FSctl

operation.

parms Optional parameters to be passed to the authorization object creation

function.

Defaults

There is no default and normally when requested without an implementation

a “not supported” error is returned.

Notes

1) The FSctk plug-in interface is defined in the XrdOfsFSctl_PI.hh include

file. Refer to this file on how to create a custom FSctl() and fctl()

implementations.

2) The plug-in is invoked in response to the kXR_query request for

kXR_Qopaque, kXR_Qopaquf, and kXR_Qopaqug query codes.

Example
 ofs.ctllib /opt/xrootd/lib/libFSCtl.so

Esoteric ofs Directives Configuration

20 11-April-2024 Configuration

3.8 dirlist

ofs.dirlist { local | remote }

Function

Specify how directory listings are to be performed via a redirector.

Parameters

local The directory at the local server is listed regardless of the type of server. This

is the default.

remote

 If the server is a cluster redirector, the cluster manager is asked for the

location of the directory to be listed and client is redirected to that server.

Otherwise, the local directory is listed.

.

Defaults
ofs.dirlist local

Notes

1) Due to historical compatibility issues the default is intended to allow

Open Storage System plug-ins to supply a composite directory listing

should the server be a redirector.

2) Normally, composite directory listing for a cluster is created by the xroot

protocol client. However, in the case of http protocol clients no such

capability exists, In this case, the default may be inappropriate.

Example
 ofs.dirlist remote

Configuration Esoteric ofs Directives

Configuration 11-April-2024 21

3.9 forward

ofs.forward [1way | 2way | 3way host:port] opers

opers: [-]foper [opers]

foper: all | chmod | mkdir | mv | remove | rm | rmdir |

 trunc

Function

Enable meta-data command forwarding.

Parameters

1way The request is forwarded with no expectation of a response from the cmsd.

This is the default forwarding mode.

2way The request is forwarded with an expectation of a response from the cmsd.

The is asked to wait until the cmsd provides a response to the request.

3way The request is forwarded with in 1way mode (see above). Afterwards, the

client is redirected to host:port and typically re-issues the request there.

host is the name or ip address of the host to receive the redirected client request.

port is the port number the redirected client is to use.

foper Specifies which metadata operations are to be forwarded. One ore more

operations may be specified. The specifications are cumulative and processed

left to right. Each operation may be optionally prefixed by a minus sign to

turn off the setting. Valid operations are:

all all possible operations remove same as rm and rmdir

chmod change mode rm file removal

mkdir create directory rmdir directory removal

mv rename requests trunc truncate by filename

Defaults
ofs.forward -all

Esoteric ofs Directives Configuration

22 11-April-2024 Configuration

Notes

1) Request forwarding is only applicable to the cluster manager. Refer to the

role directive in the “Clustering Configuration Reference” for additional

information, especially on inter-related directives.

2) Normally, meta-data requests are performed on the local host. However,

in a clustered environment there is a choice of whether to perform the

operation on the host that has the target object or every host that may

have the target object. When the forward directive is not specified, the

client is directed to perform the operation on a single host, normally the

one that has the file. When the request is forwarded, the operation is

automatically sent to all hosts that can potentially have the object in

question and the client is not redirected, unless 3way forwarding is in

effect.

3) Forward and non-forward modes of operation have distinctly different

semantics. However, neither mode takes into account that the list of

potential servers is dynamic. Since it is not possible to define a

semantically consistent result; neither mode may be suitable.

4) By default, when a request is forwarded, the client is not notified whether

or not it succeeded because the notion of success is undefined. However,

the request is executed on every currently active host that could have

possibly executed the request successfully.

5) If you provide a custom cluster manager interface using the clustering

xmilib directive, forwarded requests are processed by the provided

implementation. Client interactions and semantic results are then defined

by the custom implementation.

Example
ofs.forward mv rm

Configuration Esoteric ofs Directives

Configuration 11-April-2024 23

3.10 maxdelay

ofs.maxdeley sec

Function

Specify how long a client may be delayed each time.

Parameters

sec The maximum number of seconds a client may be when a delay is requested

by any other component.

Defaults
 ofs.maxdelay 60

Notes

1) Each component coordinated by ofs may request that a client be delayed a

specific amount of time to allow for request processing. The maxdelay

directive tells ofs the maximum amount of delay that may be imposed

each time it is requested. If the delay requested by a component exceeds

the maxdelay amount, ofs uses the maxdelay amount.

2) The default value is usually sufficient except for unusual cases. Reducing

the value may cause more client activity that would otherwise be

necessary. Increasing the value may introduce unacceptable latencies.

Example
ofs.maxdelay 45

Configuration Esoteric ofs Directives

Configuration 11-April-2024 25

3.11 notify

ofs.notify events [msgs nums [numl]] [| | >]command

events: [-]event [[-]event] [• • •]

event: all | chmod | close | closer | closew | create

 fwrite | mkdir | open | openr | openw | mv |

 rm | rmdir | trunc

Function

Enable event forwarding.

Parameters

events Specifies which operations are to send an event notification to command. One

or more operations may be specified. The specifications are cumulative and

processed left to right. Each operation may be optionally prefixed by a minus

sign to turn off the setting. Valid operations are:

all sends notifications for all the following operations

chmod access mode change

close a file is physically closed

closer a file opened in read-only mode is physically closed

closew a file opened in read-write mode is physically closed

create a file opened for possible creation

fwrite the first write to a file after it was opened in read-write mode

mkdir a directory create operation

mv a rename operation

open a file is physically opened

openr a file is physically opened in read-only mode

openw a file is physically opened in read-write mode

rm file removal

rmdir directory removal

trunc file truncation via filename

nums The maximum number of short message objects that may be kept on hand for

future use. The default is 90. See the usage notes on how this value limits the

maximum number of queued messages.

Esoteric ofs Directives Configuration

26 11-April-2024 Configuration

 numl The maximum number of large message objects that may be kept on hand for

future use. The default is 10. See the usage notes on how this value limits the

maximum number of queued messages.

command

The command, or FIFO, that is the target for event notifications. If command is

preceded by “>” then a FIFO named command is created and notifications are

written to the FIFO. No program is started. If command is preceded by “|”, the

default, notifications are sent to command via STDIN after command is started.

See the next section on the format of event notification messages.

Defaults

Event notification is normally disabled. Should is enabled, “msgs 90 10” is

the default.

Notes

1) If command is not preceded by “>” then command is started at initialization

time and is expected to consume input on STDIN.

2) The quantity nums+numl sets the limit on the number of queued messages

to command. When the limit is exceeded, messages are discarded and a

warning appears in the log when this occurs.

Example
ofs.notify closew |/usr/bin/xevent

Configuration Esoteric ofs Directives

Configuration 11-April-2024 27

3.12 notifymsg

ofs.notifymsg event msgline

event: chmod | closer | closew | create | fwrite | mkdir |

 openr | openw | mv | rm | rmdir | trunc

msgline: [text] [var] [msgline]

var: $CGI | $CGI1 | $CGI2 | $FMODE | $FSIZE | $LFN |

 $LFN1 | $LFN2 | $TID

Function

Specify the message to send to a destination when a monitored event occurs.

Parameters

event Specifies which operation, when enabled, is to generate a msgline. Specify

one of the following:
chmod closew fwrite mv openw rmdir
closer create mkdir openr rm trunc

text Arbitrary text.

var A variable whose value is determined by the current request setting. The

following variables may be specified:

$CGI all of the opaque information specified after the question mark

in the file path (same as $CGI1).

$CGI1 all of the opaque information specified after the question mark

in the first file path of two possible paths (same as $CGI).

$CGI2 all of the opaque information specified after the question mark

in the second file path of two possible paths.

$FMODE the file access mode in octal.

$FSIZE the file size in bytes.

$LFN the logical file name associated with the event (same as $LFN1).

$LFN1 the first logical file name of two possible names (same as $LFN).

$LFN2 the second logical file name of two possible names.a rename

operation as modified by localroot or the namelib function

Esoteric ofs Directives Configuration

28 11-April-2024 Configuration

$TID the client’s trace identity as username.pid:fd@host where:

username is the unauthenticated name of the client’s user.

pid is the client’s process id.

fd is the server’s socket file descriptor number.

host is the name of the originating host.

Defaults

The default message is described in the following section.

Notes

1) You may define notification messages with listing them, thus enabling them,

via the notify directive.

2) Messages are automatically ended with a new-line character (‘\n’).

3) Variables must begin with a $ (dollar sign) and end with a non-alpha-numeric

character.

4) To include a dollar sign into the message, escape it with a back slash (“\”).

5) A backslash escape is only recognized when followed by a dollar sign.

6) Important! The notifymsg msgline is not subject to general set variable

substitution.

7) Except for $CGI and its variants, the implicit value of a variable that has not

been set is the variable name itself, including the dollar sign.

8) For $CGI, if no opaque information is found, the variable is substituted with

the null string.

9) Not all variables are meaningful for all events. The following table lists

which variables have values.
Event Meaningful Variables

chmod $CGI, $CGI1, $FMODE, $LFN, $LFN1, $TID

closer $CGI, $CGI1, $LFN, $LFN1, $TID
closew $CGI, $CGI1, $FSIZE, $LFN, $LFN1, $TID

create $CGI, $CGI1, $FMODE, $LFN, $LFN1, $TID

fwrite $LFN, $LFN1, $TID
mkdir $CGI, $CGI1, $FMODE, $LFN, $LFN1, $TID

mv $CGI, $CGI1, $CGI2,, $LFN, $LFN1, $LFN2, $TID

openr $CGI, $CGI1, $LFN, $LFN1, $TID
openw $CGI, $CGI1, $LFN, $LFN1, $TID

rm $CGI, $CGI1, $LFN, $LFN1, $TID

rmdir $CGI, $CGI1, $LFN, $LFN1, $TID
trunc $CGI, $CGI1, $FSIZE, $LFN, $LFN1, $TID

Example
 ofs.notifymsg chmod $NAME $LFN $MODE

Configuration Esoteric ofs Directives

Configuration 11-April-2024 29

3.12.1 Default Event Notification Messages

Event notification messages are always sent as new-line (\n) terminated ASCII text.

The first token identifies the client that generated the event and the second token is

the name of the operation that generated the event. Subsequent tokens must be

interpreted in the context of the operation. The event messages are:

$TID chmod $FMODE $LFN1

$TID closer $LFN1

$TID closew $LFN1

$TID create $FMODE $LFN1

$TID fwrite $LFN1

$TID mkdir $FMODE $LFN1

$TID mv $LFN1 $LFN2

$TID openr $LFN1

$TID openw $LFN1

$TID rm $LFN1

$TID rmdir $LFN1

Esoteric ofs Directives Configuration

30 11-April-2024 Configuration

3.13 osslib

ofs.osslib [++ | [+cksio] [+xattr]] path [parms]

Function

Specify the location of the storage system interface layer.

Parameters

++ The specified plug-in should stack on top of the existing plug-in or default. A

stacked plug-in cannot be overridden by a subsequent directive.

+cksio the specified osslib is to also handle all I/O related to computing checksums.

Normally, native file system calls are used and this remains the default for

backward compatibility. However, when the default Oss plug-in is used,

+cksio is the default.

+xattr Specifies that the extended attribute plug-in should be loaded from the

library identified by path. The plug-in is also passed parms, if any.

path The absolute path to the shared library that contains an implementation of the

storage system interface that ofs is to use for storage access for file system

specific operations (e.g., open, close, read, write, rename, etc). Do not include

the version number (i.e. –n appearing before ‘.so’) in the specification.

parms Optional parameters to be passed to the storage system object creation

function.

Defaults

A full-featured built-in implementation is enabled for use by the ofs layer.

Notes.

1) The +xattr option provides a convenient way to package an oss and

extended attribute plug-ins together in a single shared library. If the plug-

ins reside in separate libraries or if each needs separate parameters, use

the ofs.xattrlib directive as well.

2) For developers: when +cksio is in effect, the checksum manager receives

logical file names as opposed to physical file names.

Configuration Esoteric ofs Directives

Configuration 11-April-2024 31

Example
 ofs.osslib /opt/xrootd/lib/libmyOss.so

Configuration Esoteric ofs Directives

Configuration 11-April-2024 33

3.14 persist

ofs.persist [mode] [opts]

mode: auto | manual | off

opts: hold hval[s|h|m] | logdir path | sync rnum | opts

Function

Set persist-on-successful-close (POSC) parameters.

Parameters

auto POSC processing applies to all create and create/truncate open requests.

manual

 POSC processing applies only when explicitly requested by the client. This is

the default.

off Disables POSC processing.

hval is the amount of time an incomplete file may remain in the system waiting for

a successful close request before it is deleted. The value may be suffixed by s,

h, or m (the case is immaterial) to indicate that seconds (the default), minutes,

or hours are being specified, respectively.

path is the directory where the POSC log file is to be placed. The default is based

on the all.adminpath directive or its default value when not specified. The

system automatically attempts to create any missing path components of path.

rnum the number of outstanding open requests allowed before the open request log

is committed to disk. The default is 0 which commits each open request to

disk. Specify a number between 0 and 32767, inclusive.

Defaults
ofs.persist manual hold 10m logdir adminpath[/name]/.ofs sync 0

Esoteric ofs Directives Configuration

34 11-April-2024 Configuration

Notes

1) When a file is open in create mode or create-truncate mode with POSC

processing enabled; xrootd requires that the file be explicitly closed for it

to persist (i.e., not be erased). This prevents partially copied files from

masquerading as fully complete files. If the client disconnects or the server

fails before the file is closed, the file is placed in a pending state for hval

time and the system waits for a file re-open and a successful close.

2) When a file has been placed in a pending state, it may only be re-opened

in read-write or write mode. Clients opening the file in read-mode are

delayed until the file is either successfully closed or removed.

3) To minimize the risk of incorrect completion, the system limits which

clients can re-open a pending file.

a. Normally there can only be a single writer with no readers. This is

the first line of defense. However, since the all.export NOLOCK

option bypasses this defense it is incompatible with POSC

processing unless an external locking mechanism of comparable

strength is used.

b. If the file is re-opened without specifying the POSC option (see

below) then only the client who has current create ownership is

allowed to open the file. Create ownership is first assigned when a

file is opened either with the kXR_new or kXR_delete option (i.e.,

create or create/trunc). The owner’s identity is based on the client’s

loginid, process ID (i.e., pid), and host name. Hence, only the client

that originally created the file may continue to write to the file.

c. If the file is re-opened with the POSC option, then create

ownership is transferred to the client re-opening the file.

4) POSC processing may be requested in one of two ways:

a. Using the kXR_posc option on the kXR_open request, or

b. Specifying “posc.ofs=y” in the CGI part of the file name (e.g., file

names of /path/fname?posc.ofs=y”).

5) When a POSC-enabled file encounters a file system related error during a

write operation, its name is immediately deleted from the file system. The

space is released when the client either closes the file or disconnects.

6) When obtaining stat information for a POSC-type file not yet successfully

closed, the kXR_poscpend flag will be set in the flag area.

7) The sync parameter allows you to reduce disk load in order to support

more POSC open requests per second. Be aware that should the machine

fail before the POSC log is committed to disk, files nor reflected in the log

will not be removed upon restart.

Configuration Esoteric ofs Directives

Configuration 11-April-2024 35

Example
ofs.persist auto logdir /var/run/xrootd/posc

Esoteric ofs Directives Configuration

36 11-April-2024 Configuration

3.15 preplib

ofs.preplib [++ | [+noauth]] path [parms]

Function

Specify the location of the file preparation plug-in.

Parameters

++ The specified plug-in should stack on top of the existing plug-in or default. A

stacked plug-in cannot be overridden by a subsequent directive.

+noauth

 Does not apply authorization to the list of files to be prepared.

path The absolute path to the shared library that contains an implementation of the

prepare interface that ofs is to use for prepare requests.

parms Optional parameters to be passed to the storage system object creation

function.

Defaults

A basic built-in implementation is enabled for use by the ofs layer.

Notes

1) The prepare plug-in interface is defined in the XrdOfsPrepare.hh include

file. Refer to this file on how to create a custom file preparation

implementation.

2) Normally, all file paths supplied by the client must be readable by the

client. If you wish to perform custom authorization, specify +noauth to

disable the authorization check.

Example
 ofs.preplib /opt/xrootd/lib/libmyprep.so

Configuration Esoteric ofs Directives

Configuration 11-April-2024 37

3.15.1 Generic Prepare Plug-in

ofs.preplib [+noauth] dpath/libXrdOfsPrepGPI.so [parms]

parms: -admit reqlist [-cgi] [-debug] [-maxfiles nf]

 [-maxquery nq] [-maxreq nr] [-maxresp sz[k|m]]

 [-pfn] -run pgm

reqlist: req[,reqlist]

req: all | cancel | evict | prep | query | stage

Function

Specify the location of the generic prepare plug-in and its parameters.

Parameters

dpath The directory path where the plug-in shared library resides.

parms The plug-in parameters. If not specified with the directive, the parameters

may be specified in the configuration file using the prepgpi.parms directive.

See the examples for details.

-admit

 The comma separated list of requests the plug-in wishes to handle.

Unspecified requests are handled using defaults provided by the plug-in

driver (see the notes for more details). The requests that can be admitted are:

 all all possible requests (i.e. those below).

 cancel requests to cancel previously issued evict or stage requests.

 evict requests to remove stage-able files (see usage notes).

 prep notification of future access.

 query requests to display the state of a previous stage request.

 stage requests to bring offline files online for access (e.g. tape).

-cgi Includes the cgi information, if present, with the target file name.

-debug

 Displays extensive debugging information and should only be used when

actually debugging a particular problem.

Esoteric ofs Directives Configuration

38 11-April-2024 Configuration

-maxfiles nf

 The maximum number of files allowed in a single request. Specify for nf a

value between 1 and 1024, inclusive. The default is 48.

-maxquery nq

 The maximum number of concurrent query requests allowed. Requests

beyond this value are queued for execution. Specify for qr a value between 1

and 64, inclusive. The default is 8.

-maxreq nr

 The maximum number of concurrent requests allowed. Requests beyond this

value are queued for execution. Specify for nr a value between 1 and 64,

inclusive. The default is 4.

-maxresp sz[k|m]

 The maximum size a response can be before getting truncated. Specify for sz

number of bytes between 2k and 16m, inclusive. The sz can also be suffixed

by k or m to denote kilo- or megabytes, respectfully. The actual useable size

is one byte less due to the added ending null byte. The default is 2k.

-pfn passes physical file names to the executable. By default, logical file names are

passed to the executable.

-run pgm

 specifies the executable, pgm, to launch to process the request. The name of

the executable should be an absolute path but this is not enforced.

Defaults
-maxfile 48 –maxqueries 8 –maxreq 4

Notes

1) Each request has a built-in handling default, as follow:

a. cancel: if the target request is still queued it is removed from the

queue. Otherwise, the client is told that the request cannot be

cancelled.

b. evict: the client is told the request is not supported.

c. prep: the request is accepted but otherwise ignored.

d. query: the client is told whether or not the target request is queued.

e. stage: the client is told the request is not supported.

Configuration Esoteric ofs Directives

Configuration 11-April-2024 39

2) Evict requests are used to indicate that a file does not need to be online.

That is, if it were previously staged from an external source it can be

removed. If it has not yet been copied to an external source it should be

removed after the file has been copied. The actual implementation should

adhere to this notion.

3) Query and non-query requests have separate concurrent limits. The

maxquery parameter specified the maximum number of concurrent

queries while the maxreq parameter specifies the maximum number of

concurrent non-query requests.

4) Do not specify a larger than need maxresp sz value. The plug-in always

allocates specified size in order to handle the worst case.

5) The generic prepare plug-in is not stackable and must be the last one in

the chain of stacked plug-ins.

6) Requests are queued in the order they arrive. Be aware that query and

non-query requests have separate queues.

7) A query requests can only remain queued for a maximum of 33 seconds. If

it cannot be launched within this time, the client is told the request timed

out.

8) All requests accept a list of target files. For instance, files specified for

query only request information for the specified files. Whether or not such

specificity is supported is implementation dependent.

9) The xrdprep command provides a convenient command line interface to

the prepare process.

Example
 The following two examples are equivalent.

 Example 1:
 ofs.preplib /opt/xrootd/lib/libXrdOfsPrepGPI.so\

 -admit query,stage –maxfiles 256\

 –run /opt/xrootd/preppgm

 Example 2:
 ofs.preplib /opt/xrootd/lib/libXrdOfsPrepGPI.so

 prepgpi.parms -admit query,stage –maxfiles 256

prepgpi.parms –run /opt/xrootd/preppgm

Configuration Esoteric ofs Directives

Configuration 11-April-2024 41

3.15.2 Generic Prepare Program Execution

The following arguments and environmental variable are passed to the launched

prepare executable. Note that the number of arguments is variable but options

always ends with a ‘--‘ and is followed by parameters.

argv: pgm [-a] [-C] [-n {fin|rdy}] [-p prty] [-w] -- parms

parms: handle req [path [path […]]

req: cancel | evict | prep | query | stage

Envars: XRDPREP_COLOC XRDPREP_NOTIFY XRDPREP_TID

Arguments

pgm The name of the executable.

-a The access time of the file being prepared should be set to the current time.

This is only relevant for prep and stage requests.

-C The file(s) should be physically co-located with the file named in the

XRDPREP_COLOC environmental variable. This is only relevant for prep

and stage requests.

-n {fin|rdy}

 a notification should be sent using the target specified in the

XRDPREP_NOTIFY environmental variable (see the notes). This is only

relevant for prep and stage requests. When fin is specified, the notification

should be sent whether or not the request succeeded. When rdy is specified a

notification should only be sent upon success.

-p prty

 is the request priority with 0 being the lowest possible priority. This is only

relevant for prep and stage requests.

-w Files will be accessed for writing. This is only relevant for prep and stage

requests.

Esoteric ofs Directives Configuration

42 11-April-2024 Configuration

-- Indicates the end of the option list. Subsequent arguments are parameters.

handle

 is a unique identifier for the request. It is only relevant for stage requests as

the client must use this handle to cancel and query requests. An asterisk (*)

indicates that no specific handle has been assigned.

req is the name of the request.

path if a file name relevant to the request (e.g. for stage the file that should be

brought online). The evict, prep and stage requests require at least one or

more files to be specified. Other requests may or may not have specified files.

Notes

1) The XRDPREP_TID environmental variable holds the unique real-time

identification of the client making the request and can be used to tie back to

normal XRootD messages that display this identification.

2) To maintain backward compatibility, the program should skip any unknown

options. If the unknown option is followed by a token that does not start with

a dash, it should be skipped as well. This essentially precludes using option

parsers that permute the argument list. Permuting the argument list is

unnecessary as the plug-in driver guarantees that all options appear before all

parameters and the two are separated by a double dash.

3.15.3 Program Responses

1) Success is indicated by the program ending with a status code of zero.

Any other status code is considered a failure.

2) Since non-query requests are executed asynchronously, the client is not

notified of any program failure as the client is allowed to resume the

moment the request is accepted and either queued or dispatched.

3) Query requests are executed synchronously and all output written to

stdout is returned to the client. However, there is a limit of approximately

2,000 bytes. Any output beyond this limit is discarded and the client is

told the result has been truncated.

Configuration Esoteric ofs Directives

Configuration 11-April-2024 43

3.15.4 Program Generated Notifications

When the –n option is present, the client has requested notifications and the

environmental variable XRDPREP_NOTIFY contains how the notifications are to be

sent. If the envar is not present or is unspecified, the –n option should be ignored.

When present it will have the form of:

{tcp|udp}://host:port/

This indicates that a tcp or udp message should be sent to host at port. The fin option

indicates that notifications are to be sent for all events (i.e. successful and

unsuccessful staging events). The rdy option indicates the client only wants

notification for successful events.

Each notification should end with a new line character. A udp message may have

more than one notification in it. The format of the message should be:

req handle {END | status path [msg]}\n

status: OK | ENOENT | BAD

req: cancel | evict | prep | stage

Where

req is the name of the request.

handle is a unique identifier for the request as supplied in the argument list.

END indicates that processing completed and no more notification will be sent.

This is always the last message to be sent.

status is the ending status:

 OK the request completely successful.

 ENOENT the request failed because the file did not exist.

 BAD the request failed, the message describes the error.

path if the target file name.

msg is an optional message describing the failure.

Configuration Esoteric ofs Directives

Configuration 11-April-2024 45

3.16 tpc

ofs.tpc [allow aparms] [autorm] [cksum type] [echo]

 [fcreds [?]auth =envar] [fcpath path] [logok]

 [require {all | client | server} auth]

 [restrict path] [scan {all | stderr | stdout}]

 [streams num[,max]] [ttl tdflt [tmax]]

 [xfr xmax] [pgm prog]

aparms: [dn name] [group grp] [host hn] [vo vo]

ofs.tpc redirect host:port [cgi]

Function

Enable and set third-party-copy (TPC) parameters.

Parameters

allow requests to copy data in behalf of a client are allowed only if the requestor’s

authentication information matches the specified values. By default,

authentication information, if any, is ignored. One or more values must be

specified and the incoming requestor’s information must match all of the

specified values. Possibilities are:

 dn - distinguished name host - host name

 group - the unix group name vo - virtual organization name

autorm

 automatically removes the destination file should the copy fail (i.e. return a

non-zero return code). By default, the destination file is always left in place

regardless of success or failure.

Esoteric ofs Directives Configuration

46 11-April-2024 Configuration

cksum type

 files copied to the destination host must be check summed and verified using

a checksum of the specified type (e.g., adler32, crc32, crc32c, md5). By default,

checksums are computed and verified only if the client requests it.

echo Write to the log file all output subject to the scan option. By default, scanned

output is not written to the log file.

fcreds [?]auth =envar

 forward client’s delegated credentials when authenticating with auth protocol

(e.g. gsi). The credentials are written to a file and the path is set in envar prior

to starting the copy program. The operation fails if the client does not have

credentials that can be forwarded. If the auth is prefixed by a question mark

(?), the server’s credentials are used if the client did not supply delegated

credentials. See the next secion for more information.

fcpath path

 specifies the directory path where forwarded credentials are to be written.

The default path is “adminpath/.ofs/.tpccreds” which is qualified with the

server’s instance name, if any. The directory path is automatically created

should it not exist.

logok Write to the log file all successful TPC authorizations. By default, only

authorization failures are logged.

require {all | client | server} auth

 allows a TPC request only when the requesting client or server have

authenticated using the auth authentication protocol (e.g. gsi, krb5, etc).

Different authentication protocols may apply to a client and server.

Specifying all requires the same authentication protocol to be used by both.

By default, no authentication requirements are applied.

restrict path

 restricts TPC requests to files residing in a path whose prefix matches the

specified path. By default, no path restrictions are applied.

Configuration Esoteric ofs Directives

Configuration 11-April-2024 47

scan {all | stderr | stdout}

 scans the output of the copy command for a possible error message

describing a failure. If the copy returns a non-zero return code (i.e. failure) ,

the scanned error message is returned to the client as the reason. Specifying

stderr scans only lines written to stderr. Specifying stdout scans only lines

written to stdout. The default, all, scans stderr and stdout. See the usage

notes describing error message detection. Also see the echo option.

streams num[,max]

 the number of TCP streams to use to effect the copy. This can be followed by

a comma and max which is the maximum number of streams allowed. If the

client asks for more streams than max, it is set to max. The streams value is

passed to the program using the ‘-S’ option only if it is greater than 1. The

default number of streams is 1. The default max is set to num and can be no

more than 15.

ttl tdflt [tmax]

 is the default amount of time a client TPC authorization may live. You may

also specify the maximum amount of time a client may request.

Authorizations are automatically canceled when their time to live (i.e. ttl) has

been exceeded. Each value may be suffixed by s, h, or m (the case is

immaterial) to indicate that seconds (the default), minutes, or hours are being

specified, respectively. The default tdflt is 7 seconds and the default tmax is 15

seconds.

xfr xmax

 the maximum number of simultaneous TPC copies that max occur at the

same time. The default is 9.

pgm prog

 is the program to be executed to copy the file from the source server to the

destination server. The pgm option must be the last option on the directive

line since all remaining characters are used as parameters to the program. The

default is xrdcp.

redirect

TPC requests issued to a destination server should be redirected to the

specified host:port. See the next section for proper use of this directive.

Esoteric ofs Directives Configuration

48 11-April-2024 Configuration

Defaults

By default, TPC is not enabled. Should ofs.tpc be specified, the following

defaults are used for unspecified parameters.

ofs.tpc ttl 7 15 xfr 9 pgm xrdcp --server [-C type] [-S num]

Notes

1) The ofs.tpc directives are cumulative. This means you can break up the

directive into multiple lines. This allows specifying multiple allow, fcreds,

require, and restrict parameters.

2) When using delegated credentials, the credentials are temporarily written

to disk. For enhanced security you should specify the fcpath option to

point to a disk partition that uses hardware encryption.

3) When you specify a program (i.e. pgm parameter) the program is invoked

with any specified arguments possibly followed by a ‘-C’ option if the

cksum parameter is specified or when the client requests checksum

processing and two parameters, as follows:

-C type[:value]] srcurl destpfn

Where type is the checksum type (e.g. adler32, crc32, crc32c, md5) and the

optional value is the expected checksum value expressed in hexadecimal.

The program should be prepared to handle this option. The srcurl is the

source URL that includes CGI information required by the source server

to accomplish the third party copy. The destpfn is the physical file name at

the local server. This file should be truncated to a length of zero and then

over-written. It should not be removed prior to copying as it may be a

symbolic link to another physical location.

4) When you specify a program (i.e. pgm parameter) the program is invoked

with any specified arguments possibly followed by a ‘-S’ option if the

streams parameter is specified with a default value greater than 1 or if the

client requests more than 1 stream, as follows:

-S numstreams

5) The TPC process always scans the output of the copy command for any

relevant error message that can be used to inform the client of the nature

of a failure. The last list that contains a colon is considered the most

relevant error message. Text after the colon is treated as the reason for the

failure. This message is only used when the copy returns a non-zero

return code.

6) Refer to the “XRootD Third Party Protocol Reference” for a description of

the third party copy (TPC) protocol.

http://xrootd.org/doc/prod/tpc_protocol.htm

Configuration Esoteric ofs Directives

Configuration 11-April-2024 49

3.16.1 Redirecting TPC requests

You can configure a destination (i.e. the endpoint receiving a file) to redirect TPC

requests to another host for processing. This means that an ofs.tpc redirect directive

may apply to a redirector as well as a server. TPC redirection may be used in cases

where you would like to better manage load as well as other special processing.

However, special care must be taken depending on how you handle TPC requests.

When you configure TPC to use delegated credentials, you may redirect to any

endpoint since the request is not tied to any specific server. This is particularly

useful because you need not configure every server to generate delegated

credentials for each login, only the redirection target server needs to generate

delegated credentials and only if it will be actually receiving the file. This will

reduce the authentication latency as delegation processing will occur only for TPC

requests. Information on delegated TPC can be found in the next section.

Conversely, when delegation is not used, the TPC request may only be redirected to

another xrootd daemon running on the same host. This is because the request is

necessarily tied to the host that will be receiving the file. In this case, you may

specify localhost as the redirection target hostname.

The ofs.redirect directive also allows you to specify additional cgi information that

the client will add to the file URL used to open the file at redirection target. The

redirection target should not have an ofs.redirect directive as this may cause a

redirection loop.

3.16.2 The TPC Script

The TPC script is free to do anything it wants. However, it should be careful on how

it deals with the destination path. This path, many times, is a symlink to the actual

data file. Hence, it should never be removed or renamed. To delete space allocated

to the file, if any, it should simply truncate the destination file to zero byes. The

client tracks copy progress by periodically doing a stat on the destination file. If tha

file has been renamed the client will see no progress and eventually terminate the

copy operation. If the file symlink is removed and then recreated; it will likely be

placed in the wrong partition creating other problems.

For tracing purposes, the envar XRD_TRACEID is set to the trace identifier

associate with the client that requested the copy. Messages should print this value so

it can be paired with the original request.

Esoteric ofs Directives Configuration

50 11-April-2024 Configuration

3.16.3 Third Party Copy Using Delegated Credentials

Third party copy can use delegated credentials to perform the copy for those

authentication protocols that support delegation. Currently, only gsi authentication

supports delegation. Normally, when you specify that delegated credentials are to

be used via the fcreds option, the client is required to supply such credentials. If the

client does not supply delegated credentials, the copy request is rejected. You may

specify a fallback by prefixing the auth specified with a question mark. The fallback

uses the server’s credentials and is backward compatible with earlier versions of tpc.

Be aware that the server must have usable credentials for the copy to succeed in

such a case (e.g. gsi proxy credentials).

In order to successfully use delegation three conditions must be met:

1) The client must enable credential delegation.

2) The server’s authentication protocol must be configured for delegation.

3) The ofs.tpc directive must enable server-side delegation.

Typically, the client enables delegation by using the delegate argument of the –tpc

command line option; for example,

xrdcp -tpc delegate only sourcefile destinationfile

Configuring the server’s authentication protocol to use delegated credentials is

largely dependent on the protocol being used. Since delegation is currently only

supported by gsi authentication you should specify

sec.protocol gsi -dlgpxy:1 -exppxy:=creds any_additional_options

in the configuration file. Refer to the gsi protocol in the Security Reference for

complete information.

Finally, to enable server-side delegation for gsi you should specify

ofs.tpc fcreds gsi =X509_USER_PROXY any_additional_options

Since delegated credentials are only relevant for the destination server (i.e.. there is

no requirement placed on the source server) delegated third party copy securely

works with any source server that supports gsi authentication even if it does not

support the tpc protocol. Using a fallback, even though it works, is not secure since

authorization to access the source file is based on the server’s permissions not the

client’s permissions.

Configuration Esoteric ofs Directives

Configuration 11-April-2024 51

3.17 trace

ofs.trace [-]toption [[-]toption] [• • •]

toption: aio | all | chmod | close | closedir |

 debug | delay | dir | exists | fsctl |

 getstats | io | mkdir | most | open |

 opendir | qscan | read | readdir | redirect |

 remove | rename | sync | truncate | write

Function

Enable tracing.

Parameters

toption

Specifies the tracing level. One ore more options may be specified. The

specifications are cumulative and processed left to right. Each option may be

optionally prefixed by a minus sign to turn off the setting. Valid options are:

aio traces asynchronous I/O events

all selects all possible trace levels

chmod traces change mode requests

close traces close file requests

closedir traces close directory requests

debug traces internal functions

delay traces client delays requested by other components

dir equivalent to closedir opendir readdir

exists traces file stat requests

fsctl traces file system control requests

getstats traces statistics inquiry requests

io equivalent to read write

mkdir traces create directory requests

most equivalent to all –aio -read –readdir –write

open traces file open requests

opendir trace directory open requests

read traces file read requests

Esoteric ofs Directives Configuration

52 11-April-2024 Configuration

readdir traces directory read requests

redirect traces client redirections

remove traces file removal requests

rename traces file rename requests

sync trace file synchronization requests

truncate traces file truncate requests

write trace file write requests

Defaults

ofs.trace -all.

Notes

1) Tracing occurs at the logical file system level. Additional tracing is

available at the physical file system level using the oss.trace directive.

Other components have additional tracing mechanisms.

2) Enabling tracing can seriously degrade overall performance. This directive

should only be used for debugging purposes..

Example
ofs.trace most -dir

Configuration Esoteric ofs Directives

Configuration 11-April-2024 53

3.18 xattr

ofs.xattr [maxnsz nsz] [maxvsz vsz] [uset {on | off}]

Function

Specify file extended attribute parameters.

Parameters

maxnsz nsz

 specifies the maximum length for extended attribute names. Specify a value

between 9 and 255, inclusive. The default is 255.

maxvsz vsz

 specifies the maximum length for extended attribute value. The default is

65536 (i.e. 64K) and can only be set lower.

uset {on | off}

 specifying on enables user settable extended attributes. This is the default.

Specifying off disables user settable extended attributes.

Defaults
ofs.usxattr maxnsz 248 maxvsz 65536 uset on

Notes

1) The user settable limits apply to all exported file system. You should

specify the lowest limit for attribute names and values supported by any

exported file system.

2) The ofs reserves 8 characters of the extended attribute name for internal

purposes. Hence, the user settable limit is 8 characters less than what you

actually specify as the maxnsz limit.

3) Disabling user settable attributes does not disable internal use of extended

attributes.

4) See the oss.defaults and all.export directives on how to disable extended

attribute on a path by path basis for users and internal use.

5) Unspecified values revert to the default setting.

Example
 ofs.usxattr maxvsz 4096

Esoteric ofs Directives Configuration

54 11-April-2024 Configuration

3.19 xattrlib

ofs.xattrlib {osslib | [++] path} [parms]

Function

Specify the location of the extended attribute interface layer.

Parameters

osslib Specifies that the extended attribute plug-in should be loaded from the

library identified by the ofs.osslib directive.

++ The specified plug-in should stack on top of the existing plug-in or default. A

stacked plug-in cannot be overridden by a subsequent directive.

path The absolute path to the shared library that contains an implementation of the

extended attribute interface that ofs is to use to fetch and store extended

attributes.

parms Optional parameters to be passed to the extended attribute object creation

function.

Defaults

A full-featured built-in implementation is enabled for use by the ofs layer.

Notes

1) The extended attribute interface is defined in the XrdSysXAttr.hh include

file. Refer to this file on how to create a custom extended attribute

implementation.

2) See the ofs.osslib directive for an alternative way of specifying the

location of the extended attribute plug-in.

Example
 ofs.xattrlib /opt/xrootd/lib/libmyXAttr.so

Configuration Common oss Directives

Configuration 11-April-2024 55

4 Common oss Configuration Directives

4.1 alloc

oss.alloc minspace[k | m | g] [headroom [fuzz]]

Function

Specify the way a disk partition is selected for file placement.

Parameters

minspace

The minimum number of free space, in bytes, that must be available in the

partition in order for it to be selected. This value also establishes the

minimum allocation size for new files. The value may be suffixed by k, m, or

g to scale num by 210, 220, or 230, respectively. Specifying an asterisk uses the

default value.

headroom

The percentage of the requested amount of space to be added to the request

in order to compute the allocation size. This can be considered an allocation

overhead. Specifying an asterisk uses the default value.

fuzz The percentage difference between two free space quantities that must exist

in order for them to be .differentiable. Therefore, quantities that differ by less

than the specified percentage are considered equivalent. See the notes for a

more detailed explanation of this parameter. Specify a value between 0 and

100, inclusive. Specifying an asterisk uses the default value.

Defaults
 oss.alloc 0 0 0

Notes

1) The minspace parameter does not necessarily allow you to leave a certain

amount of space free in a partition because when the requested amount

equals the minspace value and a partition has minspace bytes left, the

partition may be selected.

Common oss Directives Configuration

56 11-April-2024 Configuration

2) The headroom parameter allows you to effectively overestimate a requested

amount of space. If a creation request does not specify the allocation

amount, the minspace quantity is used.

3) The fuzz parameter controls the order in which partitions are selected. At

the extremes; zero effectively forces oss to always use the partition with

the largest amount of free space; while 100 forces oss to use a round-robin

allocation scheme. Intermediate values proportionately merge the two

types of strategies.

4) The case of the scaling letter is not important.

5) The allocation size may be passed to oss via opaque information using the

&oss.asize variable. Refer to the section “Opaque Information” on

how to specify opaque information.

Example
 oss.alloc 100M 20 50

Configuration Common oss Directives

Configuration 11-April-2024 57

4.2 defaults

oss.defaults options

options: cache [no]check [no]dread

 {forcero | readonly | r/o | r/w | [not]writable}

 {inplace | outplace} {local | global | globalro}

 {[no]mig | [not]migratable} [no]mkeep [no]mlock

 [no]mmap [no]purge [no]rcreate [no]stage stage+

 [no]xattrs

Function

Specify default file processing options.

Parameters

Option Disabled/Enabled Function Default

cache Designate path as cacheable space. See

notes on the implications.

Only when used

with Xcache.

[no]check [Do not] check that a file exists in a

remote storage system prior to

creating the file in the local file

system.

check when migrate

specified with a r/w

path; otherwise

nocheck.

[no]dread [Do not] read the remote storage

system directory contents to list a

directory.

dread when rsscmd

specified; otherwise

nodread.

forcero Convert all file open requests to read-

only access.

writable

inplace Do not use file systems specified via

the oss.space directive; instead, place

file data in the name space.

outplace

local Do not export this path via the cluster

manager (i.e., redirector).

global

global Export path via the cluster manager

(i.e., redirector).

global

Common oss Directives Configuration

58 11-April-2024 Configuration

Option Disabled/Enabled Function Default

globalro Export path via the cluster manager

(i.e., redirector) as an r/o path.

global

[no]mig Local files are [not] migrated to a

remote storage system

([not]migratable is a synonym).

nomig

[no]mkeep [Do not] keep memory mapped files

in virtual memory.

nomkeep

[no]mlock [Do not] lock memory mapped files in

real memory.

nomlock

[no]mmap [Do not] memory map files. nommap

outplace Use file systems specified via the

oss.space directive for file data.

outplace

[no]purge [Do not] purge little used files. nopurge

[no]rcreate [Do not] create files in a remote

storage system when they are created

on local migratable disk

norcreate

readonly

r/o

Files may only be opened for read

access.

writable

r/w Path is writable. writable

[no]stage [Do not] stage a file from a remote

storage system should it not exist in

the local file system at open time.

nostage

stage+ Same as stage above but also exports

the attribute to meta-managers.

[not]writable Path is [not] writable. writable

[no]xattrs Path does [not] allow extended

attributes

xattrs

Configuration Common oss Directives

Configuration 11-April-2024 59

Notes

1) Directive options are applied to paths specified by the export directive.

This allows you to selectively over-ride the default,

2) The defaults directive should be specified prior to any export directives.

3) Components that use the all.export directive also use the oss.defaults

directive to establish path defaults.

4) Migration and staging is, by default, provided by the File Residency

Manager (FRM). To use the FRM you must configure and run frm_xfrd.

See the “File Residency Manager Reference” for details.

5) You provide real-time remote storage services using the rsscmd directive

and an alternate staging implementation using the stagecmd directive.

Notes on cache

1) The cache attribute indicates that the path is used for data caching. As

such, the path automatically becomes readonly.

2) Conflicting attributes are turned off irrespective of what is specified. Thus,

the attributes: notwritable, nomig, nomkeep, nomlock, nommap,

nopurge, norcreate, and nostage are enforced.

3) When the Proxy File Cache (pfc) component (a.k.a. Xcache) configures the

Open Storage System (oss) for its use, it automatically sets the cache

attribute for all exported path.

4) When Clustering Management Services (cms) see a path with the cache

attribute, special processing is done in order to support cached space. It is

crucial that the cache option be specified for any export directives target to

the cmsd during configuration.

Notes on [no]check

1) For data consistency, an identically named file should not exist in a

remote storage system when creating a new file or renaming an existing

file in the local file system.

2) In order to prevent the creation of an inconsistent set of files; the check

becomes the default for paths with migrate and writable attributes. In this

case, you must provide an rsscmd so that remote file existence can be

determined.

3) If you accept the default check attribute or explicitly specify check you

must also specify the rsscmd directive.

4) You may turn off consistency checking by explicitly specifying nocheck. A

warning may be issued if the oss determines that an inconsistency may

arise.

Common oss Directives Configuration

60 11-April-2024 Configuration

Notes on [no]dread

1) The nodread option significantly improves performance for most

directory lookup operations when the directory resides in a remote

storage system (e.g., Mass Storage System).

2) The nodread option should only be used on paths where the client is not

sensitive to the fact that a directory may appear to have a subset of the

actual files that may populate the directory.

3) If you specify dread you must also specify the rsscmd directive.

Notes on forcero

1) The forcero option forces all read/write file open requests to be converted

to read/only opens, thus preventing modifications to all files. No errors

are returned unless an actual write operation is attempted.

2) When the forcero option is specified, files may not be created, deleted, or

renamed. Any attempt to do so causes a “read only filesystem” error to be

reflected to the client program.

Notes on [no]mig or [not]migratable

1) The migratable option informs oss that file may be migrated to a remote

storage system by some external process. To assist that process, special

files are created to coordinate migration of modified files in the local file

system to the remote storage system.

2) The word mig is a valid abbreviation for migratable.

3) The word nomig is a valid abbreviation for notmigratable.

Notes on [no]mkeep

1) The mkeep directive implies mmap and forcedro. Hence, memory

mapped files are considered read-only.

2) When mkeep is specified, the server attempts to memory map every file

that is opened and keep the mapping available even after the file is closed.

3) The default, nomkeep, when used with mmap, makes the virtual memory

space of a memory mapped file available for reuse when the memory

mapped file is closed.

4) See mmap for additional notes.

Configuration Common oss Directives

Configuration 11-April-2024 61

Notes on [no]mlock

1) The mlock directive implies mmap and forcedro. Hence, memory

mapped files are considered read-only.

2) When mlock is specified, the server attempts to memory map every file

that is opened and lock the memory space in real memory.

3) The default, nomlock, when used with mmap, makes the real memory

space of a memory mapped file available for displacement when the

operating system needs space for more critical functions.

4) The mlock option is automatically disabled if the server does not have

privileges to lock virtual memory pages in real memory.

5) See mmap for additional notes.

Notes on [no]mmap

1) The mmap directive implies forcedro. Hence, memory mapped files are

considered read-only.

2) When mmap is specified the server attempts to memory map every file

that is opened.

3) The default, nommap uses standard file system I/O to bring data into

memory.

4) Memory mapped I/O can reduce server overhead by 50% or more.

However, it does significantly impact memory usage. Typically, you

should only memory map high use random access files.

5) Use the memfile directive to further tune memory mapped I/O such as the

amount of memory to devote to memory mapped file, and to memory

map files on an individual file basis.

Notes on [no]purge

1) This option is used by frm_purged, part of the File Residency Manager, to

determine which least used files are allowed to be removed from local

disk.

Notes on [no]rcreate

1) You must specify the rsscmd directive to provide an access path to the

remote storage system when you specify rcreate.

Notes on readonly

1) The readonly option forces an immediate error to occur should a file be

opened for read/write access. Files may also not be created, deleted, or

renamed. Any attempt to do so causes a “read only filesystem” error to be

reflected to the client program.

Common oss Directives Configuration

62 11-April-2024 Configuration

Notes on [no]stage

1) When stage is in effect and a file is opened but not found on local disk, the

oss will either use its own built-in staging mechanism or the program

specified by the stagecmd directive to get a copy of the file. The nostage

option prohibits this action.

2) The built-in mechanism used by oss to bring files in relies on you running

frm_xfrd. Refer to the File Residency Manager (FRM) reference for more

information.

2) The nostage is useful in those instances where installation policy

mandates that files be manually pre-staged prior to use.

3) The nostage and stage directives may be applied to selected paths using

the export directive.

4) Normally, the stage attribute is not exported to meta-managers. If you

need the attribute fully exported then specify ‘stage+’.

Notes on [no]xattrs

1) By default, extended attributes are enabled for all files and is used to

record various information (e.g. checksums). If an exported path resides

on a file system that does not support extended attributes, you should

specify noxattrs for the path to avoid various error messages appearing in

the log.

2) Disabling extended attributes also disables any features that rely on being

able to record extended information for a file using extended attributes.

3) Also see the ofs.xattr directive about controlling user settable extended

attributes.

Example
 oss.defaults stage forcero

Configuration Common oss Directives

Configuration 11-April-2024 63

4.3 export

all.export path [xopts] [options]

options: cache [no]check [no]dread

 {forcero | readonly | r/o | r/w | [not]writable}

 {inplace | outplace} {local | global | globalro}

 {[no]mig | [not]migratable} [no]mkeep [no]mlock

 [no]mmap [no]purge [no]rcreate [no]stage stage+

 [no]xattrs

Function

Specify processing options for any entry matching the specified path prefix.

Parameters

path The path prefix to which the specified options apply. If no options are

specified, the current defaults are used.

xopts Are xrootd related export options. These must appear before oss path

options. Refer to the xrootd reference for available xrootd options.

options

Are the options to apply to any path whose prefix matches path. The options

are identical to those allows with the oss.defaults directive. See that directive

for an explanation of each option.

Defaults

All paths are processed according to the default options in effect at the time

the path directive is encountered. Defaults can be set for all of the options (see

the defaults directive).

Common oss Directives Configuration

64 11-April-2024 Configuration

Notes

1) Any number of export directives may be specified. They are cumulative

and are checked in decreasing length order (i.e., most-specific to least

specific).

2) Refer to the corresponding defaults directive for complete details on the

option’s effect.

3) The export directive is used by the xrootd protocol to determine which

paths are valid for incoming client requests.

4) The export directive is used by clustering services to determine which

paths are available via the cluster manager (i.e., redirector).

Example
 oss.export /xrd/files/staged mig nodread rcreate

Configuration Common oss Directives

Configuration 11-April-2024 65

4.4 localroot

oss.localroot path

Function

Specify where the local file system name space is actually rooted.

Parameters

path The path to be pre-pended to any local path specified by a client request.

Defaults

None. Paths are used locally as specified.

Notes

1) The localroot directive allows you to keep the external namespace

consistent even when you move the associated file system from one

location to another. This is because the oss always internally prefixes the

localroot to the export path when dealing with file paths.

2) As an example, the exported file system is mounted at /xrd. This means

that all file paths star with “/xrd”. The localroot directive allows you to

remount the file system elsewhere without changing the exported name.

So, if now you need to mount the file system at /usr/xrd then by specifying
oss.localroot /usr

the external view of the file system would remain the same since oss

automatically prefixes all paths with /usr and thus uses the new mount

point.

3) Use the pss.localroot directive to specify a local root for a proxy server.

4) For default Name2Name plug-ins, the specified local root path must exist

and be a directory.

Example
 oss.localroot /usr

Common oss Directives Configuration

66 11-April-2024 Configuration

4.5 remoteroot

oss.remoteroot path

Function

Specify where the local file system name space is actually rooted in the

remote storage system (e.g., Mass Storage System).

Parameters

path The path to be pre-pended to any path sent to the Mass Storage System for

processing.

Defaults

None. Paths are sent to the remote storage system service as specified.

Notes

1) The remoteroot directive allows you to place the online file namespace in

a different location within the remote storage system. Say that the online

file system is exported as /xrd. This means that all logical file names start

with /xrd. If you specify
oss.remoteroot /usr

then the file namespace would be rooted at /usr/xrd within the remote

storage system because all paths would be prefixed by /usr before being

sent to the remote storage system service.

2) The remoteroot file path may also specify a url. This may allow you to

better integrate with various copy programs. For instance, specifying
oss.remoteroot http://rserver:2080/

then all paths would be prefixed by the url before being sent to the

remote storage system service.

Example
 oss.remoteroot /usr

Configuration Common oss Directives

Configuration 11-April-2024 67

4.6 rsscmd

oss.rsscmd command

Function

Specify the command that communicates with a remote storage service (e.g.,

Mass Storage System) to perform meta-data operations.

Parameters

command

Command to execute to perform remote meta-data operations (e.g., list,

remove, rename, and stat). Specify an absolute path along with the command

name.

Defaults

None, you must specify this directive to allow real-time remote storage

system access.

Notes

1) When this directive is specified, check and dread become the default

attributes for all directories. See related directives: rcreate, migrate, and stage.

2) This directive is mandatory if check, dread, or rcreate is specified.

3) When the command is invoked, the desired operation is passed via the

command line, as follows:

create rmtfn mode - create a file using the specified octal mode.

dlist rmtdir - list the contents of a directory.

exists rmtfn - indicate whether or not the file exists1.

locate rmtfn - if the file exists returns its location.

mv oldrmtfn newrmtfn - rename a file.

rm rmtfn - remove a file.

statx rmtpath - return information about a directory or file.

4) The rmtdir and rmtfn (above) denote the name of the directory or file in the

remote storage system, respectively. This is the logical file name transformed

by the remoteroot directive or the namelib plug-in.

1
 The exists and locate operation are on ly passed if the rsscmd direct ive is used. The backward compatib ility

directive, msscmd, does not receive these operations.

Common oss Directives Configuration

68 11-April-2024 Configuration

5) The command must return a numeric return code followed by a newline

character; followed by any required output (e.g., a newline separated list of

directory entries). A return code of zero indicates that the command

succeeded. Non-zero return code values have the same meaning as defined in

“errno.h” or its equivalent (e.g., 2 means file not found).

6) The dlist operation must respond with a list of directory entries; each entry

separated by a newline character. A null line (i.e., one with only ‘\n’)

indicates the end of the list.

7) The statx operation is issued in response to client stat() requests. The command

must respond with blank separated tokens of the form:

ftype mtype nlink uid gid atime ctime mtime size blocksz blocks

where:

ftype - is the entry type as the letter d for directory or f for file.

mtype - is the mode as would have been displayed by the ls command (e.g.,

rwxr-x---).

nlink - is the number of hard links to the entry

uid - is the numeric user id that owns the file.

gid - is the numeric group id assigned to the file.

atime - is the Unix time when the file was accessed.

ctime - is the Unix time when the file was created.

mtime - is the Unix time when the file was modified.

size - is the size of the file in bytes.

blocksz - is the underlying block size of the system.

blocks - is the number of blocksz blocks occupied by the file.

8) The exists operation is issued when the oss needs to determine the existence

of a file. The command must respond with a return code 0 if the file exists, 2 if

it does not exists, or any other “errno.h” value which indicates that existence

cannot be determined.

9) The locate operation is issued when the oss needs to determine the location of

a file. The command must respond with a return code 0 if the file exists, 2 if it

does not exists, or any other “errno.h” value which indicates that existence

cannot be determined. If the file exists, the location of the file should be

returned as one or more newline separated host names.

Example
 oss.rsscmd /usr/local/bin/rsstalk

Configuration Common oss Directives

Configuration 11-April-2024 69

4.7 space (definition)

oss.space name { path | ppfx* } [chkmount mid [nofail]]

Function

Specify the location of a file system that is to be used to hold data files.

Parameters
chkmount

 Enables disk mount verification. Specify:
mid The arbitrary but distinguished mount identifier of the file system

partition that should be mounted at path. See the subsequent section on

how to use mount verification. Specify a 1- to 63-character name.

nofail specifies that server initialization should not fail if the mount cannot be

verified; otherwise, the server terminates at the end of initialization. In

either case, the space associated with path is not added to the list of

allowable places where new files can be placed.

name The arbitrary logical name for the file system. Specify a 1- to 63-character

name.

path The absolute path in the file system to be used.

ppfx* All directory entries that start with ppfx in the containing directory are to be

used to hold data files.

Defaults

None. Multiple file systems are not supported unless the space directive is

specified.

Notes

1) The oss space directive allows you to concatenate multiple file systems

(i.e., physical disk partitions) into a single file system. In some sense, this

is an implementation of a “poor man’s” volume manager.

Common oss Directives Configuration

70 11-April-2024 Configuration

2) If the underlying file system includes a volume manager, there may be no

reason to use this feature. The volume manager should already support

disk partition aggregation. On the other hand, the oss implementation

provides fine grained control of disk partitions because it externalizes the

support. For instance, clients can logically direct allocation requests to

specific partitions for performance reasons; something not available in

most volume managers.

3) File systems need not be physical partitions. When different directories on

the same physical partition are specified, they are treated as different

logical partitions from a space management viewpoint. This allows you to

create arbitrary views of available space (e.g., by SRM static space token).

4) Each path must be associated with a logical name. Any number of paths

may be associated with the name and a path may be assigned to any

number of names by listing the path each time with a different name.

5) It is highly recommended that you use star (*) notation for path. This

allows you to mount additional file systems without the need of updating

the configuration file.

6) The name is used to direct space allocation. A request may specify the

name of the space where a file is to be allocated. The oss will only allocate

space using one of the paths associated with the specified name.

7) In the absence of any specified space name, oss uses the name “public”.

Unless, you associate at least one path with the name “public”, file

creation will fail in the absence of a name specification.

8) The space name is passed to oss via opaque information using the

&oss.cgroup variable. Refer to the “Opaque Information” chapter in this

reference for information on how to specify opaque information.

9) Once space is defined using space directives, files are always allocated

within the set of specified paths. You may create exceptions and allocate

files in the file system holding the name-space by specifying the inplace

option on the export directive for specific exported paths.

10) Clustering services use the oss.space directive to identify writable file

systems. These file systems are monitored for space availability on behalf

of the cluster manager (i.e., redirector).

11) See the oss.space directive for space assignment for additional options.

Example
 oss.space public /xrootd/fsdev01

Configuration Common oss Directives

Configuration 11-April-2024 71

4.7.1 Oss Space Explained

Consider the following configuration snippet:

oss.localroot /xroot

oss.space data /hd1

oss.space meta /sd1

Three mounted file systems have been described:

 The file system to be used for file paths (i.e. the name space) mounted at

/xroot,

 The file system to be used for data files mounted at /hd1 (a hard drive), and

 The file system to be used for metadata files mounted at /sd1 (an ssd drive).

Assume a client creates a new file using the path specification
/foo/myfile?oss.cgroup=data

Then the following symbolic link and file would be created:

The name space partition contains a symbolic link that points to the location of the

actual data file in the /hd1 partition. The path and name used in the data space is

specially formulated to prevent overloading any single directory. The path in the

name space is the client specified path prefixed by localroot. The client always refers

to the file using the original path. The oss is responsible for arranging the location of

the path and actual data to correspond to the space the client wanted to use.

Common oss Directives Configuration

72 11-April-2024 Configuration

Similarly, should the client create a new file as
/foo/myinfo?oss.cgroup=meta

Then the following symbolic link and file would be created

In this example, spaces have been used to establish high performance space (i.e. ssd)

and low performance space (i.e. hard drive) and provide the ability for the client to

choose which space to use without sacrificing a single uniform name space. Spaces

can be used for any number of reasons like piecing together multiple file systems to

provide a large pool of storage space that can grow as needed.

You can use the oss.space directive to specify defaults and specific spaces that must

be used based on path. This is described in the subsequent section.

Configuration Common oss Directives

Configuration 11-April-2024 73

4.7.2 Using Mount Verification

If the oss.space path is a mount point for a volume it is usually a good idea to verify

that the expected volume is actually mounted at that directory (i.e. on the last

component of path). While not frequent, volume mounts might not occur for a

variety of reasons and in a containerized or virtual machine environment start-up

mistakes may virtually mount the wrong volume. Should this happen, new files will

be placed in the wrong location or it may be possible, though highly unlikely, that

the wrong files may be opened for reading.

The chkmount option provides a mechanism to verify that the expected volume has,

in fact, been mounted at the designated directory. This is done by verifying that the

combination of the mount identifier, mid, suffixed with a dot and the mount point

directory name exist as a filename entry in the path directory assigned to the space.

You should always choose a distinguished name for mid. It should not be reused for

other servers. If running in a containerized environment it should not be the name of

the underlying physical host as that may change and lead to confusion. Generally

the mid should correspond to the specific service being offered using the group of

mounted volumes. As an example, let’s use a mount identifier atlas_Xcache01 in the

following oss.space directive:

oss.space scratch /scratch/vol1 chkmount atlas_Xcache01

When the directive is encountered the file /scratch/vol1/atlas_xchace01.vol1 must

exists in order for the space to be accepted. If it cannot be found, no matter the

reason, mount verification fails. You may, of course, specify the nofail option to

prevent a wrong disk partition from being used but otherwise allow read-only

access to existing data. The log always contains messages about such kind of

problems.

This means there are a few simple steps that need to be done to make this work:

1) Come up with a distinguished name,
2) Bring up the server,
3) Verify that the correct volumes are actually mounted (the “df –h” command

displays mounted volumes).
4) Use the touch command to create a file using the naming scheme explained

above in each mount point that you will be using.
5) You may wish to make the file only readable to prevent inadvertent deletion.

Common oss Directives Configuration

74 11-April-2024 Configuration

4.8 space (assignment)

oss.space name { assign | default } lfnpfx [lfnpfx [. . .]]

Function

Specify the space name based on file creation path.

Parameters

name The logical name for the file system. Specify a 1- to 63-character name for an

existing space definition.

assign The space name is assigned to the corresponding lfnpfx even if the client

specified another space name using the oss.cgroup CGI element.

default

The space name is assigned to the corresponding lfnpfx should the client not

specify a space name using the oss.cgroup CGI element.

lfnpfx is a logical file name prefix. When a file is created with this prefix it is

assigned or defaulted to the specified space name.

Defaults

If the client does not specify a space name when creating a file, the name

defaults to public.

Notes

1) The order of oss.space definition and assignment directives are

immaterial. File paths are always checked using the most-to-least specific

definition.

2) A warning is issued if you specify a space assignment for a space that has

not been defined. If such cases, the client may receive a “file not found”

error when creating a file in a non-existent space.

Configuration Common oss Directives

Configuration 11-April-2024 75

Example
 oss.space foobar assign /usr/barfoo

Configuration Esoteric oss Directives

Configuration 11-April-2024 77

5 Esoteric oss Configuration Directives

5.1 fdlimit

oss.fdlimit fence [max]

Function

Specify how file descriptors are allocated.

Parameters

fence The highest file descriptor number which is to be associated with sockets. File

descriptors above this value will be associated with files. Specify a value from

zero to max. Specifying an asterisk uses max/2 as the fence value.

max The highest allowed file descriptor number to be used. If not specified, the

current soft limit is used. If you specify the word max then the current hard

limit is used. If you do specify a numeric value it must be greater than fence or

64, whichever is greater, and less than or equal to the current hard limit. If it

exceeds the current hard limit, it is set to the hard limit.

Defaults
oss.fdlimit *

Notes

1) It is highly recommended that socket descriptors be partitioned from file

descriptors. This partitioning substantially improves performance in most

operating systems. The default accomplishes this task.

Example
 oss.fdlimit * max

Esoteric oss Directives Configuration

78 11-April-2024 Configuration

5.2 maxsize

oss.maxsize num[k | m | g]

Function

Specify the maximum size of a file.

Parameters

num The maximum number of bytes that a file may have. The quantity may be

suffixed by k, m, or g to scale num by 210, 220, or 230, respectively.

Defaults

None. A file may be as large as the underlying file system allows.

Notes.

1) The case of the scaling letter is not important.

Example
 oss.maxsize 2G

Configuration Esoteric oss Directives

Configuration 11-April-2024 79

5.3 memfile

oss.memfile parms

parms: [check] [max msz[k | m | g | %]] [off] [preload]

Function

Specify memory mapped I/O options.

Parameters

check Specifies that memory mapped I/O should be controlled on an individual file

basis using checking the files’ extended attributes.

msz The amount of real memory to devote to memory mapped files. Either specify

a fixed number of bytes, optionally suffixed by k, m, or g to scale msz by 210,

220, or 230, respectively; or number between 1 and 1000, inclusive, suffixed by

% to indicate that a percentage of real memory should be devoted to memory

mapped files. The default is 50% (i.e., half the real memory of the machine).

off Disables memory mapped I/O regardless of other specified directives or

parameters.

preload

 Pre-loads the file into memory when the file is first opened. The default is to

only load the pages actually requested from the file (i.e., demand load).

Defaults
 oss.memfile max 50%

Notes

1) As memory mapped files are opened, the server attempts to find sufficient

virtual memory address space for the complete file without exceeding

msz. If possible, it reclaims address space by un-mapping files that are no

longer in use and not marked with the keep attribute. If there is still

insufficient address space available, file I/O proceeds using standard file

system calls.

Esoteric oss Directives Configuration

80 11-April-2024 Configuration

2) You may over commit real memory via the max parameter. Be aware that

severely over committing memory may lead to a significant increase is I/O

to swap space.

3) Memory mapped files are considered to be read-only. The server

automatically adds the forcedro attribute to any memory mapped file.

4) The mkeep, mlock, and mmap attributes on the path directive over-ride

the check parameter. That is, the server does not check file attributes for

any file that is eligible to be memory mapped, locked, and/or kept via the

path directive.

5) Memory locking is automatically disabled if the server does not have

privileges to lock virtual memory pages in real memory.

6) The preload parameter should be used if most of the file is likely to be

referenced. Do not specify preload when memory is overcommitted as

this causes significant I/O thrashing.

7) Files are preloaded once at open time. If the file is closed and re-opened at

a later time, another preload occurs. Displaced pages after preloading are

brought into real memory on a demand basis.

Example
 oss.memfile max 200% check map

Configuration Esoteric oss Directives

Configuration 11-April-2024 81

5.4 namelib

oss.namelib path [parms]

Function

Specify the location of the file name mapping interface layer.

Parameters

path The absolute path to the shared library that contains an implementation of the

Name2Name interface that oss is to use to make logical file names to physical

name for file system specific operations (e.g., open, close, read, write, rename,

etc).

parms Optional parameters to be passed to the Name2Name object creation

function.

Defaults

A built-in minimal internal implementation driven by the localroot and

remoteroot directives is used.

Notes

1) The Name2Name interface is defined in XrdOucName2Name.hh include

file. Refer to this file on how to create a custom file name mapping

algorithm.

2) The Name2Name interface is also used by clustering services.

3) Use the pss.namelib directive to specify a Name2Name plug-in for a

proxy server.

Example
 oss.namelib /opt/xrootd/lib/libN2N.so

Esoteric oss Directives Configuration

82 11-April-2024 Configuration

5.5 spacescan

oss.spacescan num[s | m | h]

Function

Specify how frequently internal statistics are reconciled with actual available

space in each disk partition.

Parameters

num The amount of time between disk partition scans. The value may be suffixed

by s, h, or m (the case is immaterial) to indicate that seconds (the default),

minutes, or hours are being specified, respectively.

Defaults
oss.spacescan 600

Notes

1) The oss periodically scan all disk partitions to make sure that internal

statistics about the partition match those reported by the associated file

system. The spacescan directive controls how frequently this is done.

2) Lower spacescan seconds values increase oss overhead because the scan

occurs more frequently.

3) Usage statistics are also reconciled with external systems at the end of

each scan.

4) You can also disable space scanning by setting the environment variable

XRDOSSCSCAN to a value of off.

Example

 oss.spacescan 800

Configuration Esoteric oss Directives

Configuration 11-April-2024 83

5.7 stagecmd

oss.stagecmd [async | sync | creates] [|]command

Function

Specify the command that brings files from the remote storage system into

the local file system.

Parameters

async Indicates that command will notify xrootd via a named pipe when the staging

request completes, along with how it completed. The client is told to wait

until the notification is received.

sync Indicates that the client must poll for the completion staging request (i.e., the

file appears or it’s ‘.fail’ counterpart). The client is told to wait for a fixed

amount of time and then retries to open the file.

creates

Routes file creation requests to command. The command is responsible for

creating the file.

command

The command to execute to perform a staging or create operation. Specify an

absolute path along with the command name. Preceding command with an

“or” bar designates a long running command that takes its input via standard

in (see the notes).

Defaults

The built-in interface to the File Residency Manager’s frm_xfrd is used.

Notes

1) If you wish to use a remote storage system, have specified the stage directive,

and your processing requirements cannot be met by the File Residency

Manager, you must specify the stagecmd directive.

2) The stagecmd is disabled unless at least one exported path has the stage

attribute.

Esoteric oss Directives Configuration

84 11-April-2024 Configuration

3) When the command is specified without a leading or bar, command is

executed every time a file must be brought in from the remote storage system.

The relevant actions are:

1) The stagecmd is executed in a forked process and should either copy

the specified file from the remote storage system to a specified location

in the local file system, or it should fail.

2) Success is assumed when the stagecmd returns a zero status code.

Otherwise, failure is assumed.

3) The stagecmd is invoked via execve() system call using the current

environment and is passed two arguments. The first argument is the

name of the file as it should be known in the Remote storage system.

This is the file that must be copied into the local file system. The

second argument is the name of the file, as it should be locally known

(i.e., the target location and name). Both names specify absolute paths.

4) When the command is specified with a leading or bar, command is executed

once and special requests are written to its standard in every time a file must

be brought in from the remote storage system. See the stagemsg directive on

message format details.

5) Should the staging operation fail, the command must create a “fail” file; which

is a zero-length file whose name is identical to the requested path with a

“.fail” suffix. Failure to do so causes the failing request to be resubmitted.

6) The command is normally started once. However, if command exits, it is

automatically restarted.

7) When async is specified, command must send a notification to a named pipe

indicating that the staging operation succeeded or failed. The path name of

the pipe is contained in the XRDOFSEVENTS environmental variable.

Notification is sent as a newline terminated ASCII text message. The format

is:

stage {OK | ENOENT | BAD} path [msg] \n

OK the staging request successfully completed.

ENOENT the staging request failed because the file could not be found.

BAD the staging request failed for some reason.

path is the full logical path to the file being staged.

msg an optional error message that describes the nature of the failure.

Example
 oss.stagecmd /usr/local/bin/StageIn

Configuration Esoteric oss Directives

Configuration 11-April-2024 85

5.8 stagemsg

oss.stagemsg msgline

msgline: [text] [var] [msgline]

var: $CGI | $LFN | $PFN | $RFN | $LFN2 | $PFN2 |

 $RFN2 | $FMODE | $HOST | $OFLAG | $TID |

 $USER | $eVar

Function

Specify the message to be sent to a piping stagecmd when a staging request is

received.

Parameters

text Arbitrary text.

var A variable whose value is determined by the current request setting. The

following variables may be specified:

$CGI all of the opaque information specified after the question mark

in the file path

$LFN the logical file name

$PFN the physical file name as modified by localroot or the namelib

function

$RFN the remote file name as modified by remoteroot or the namelib

plug-in

$LFN2 the second logical file name in a rename operation.

$PFN2 the second physical file name a rename operation as modified by

localroot or the namelib function

$RFN2 the second remote file name a rename operation as modified by

remoteroot or the namelib plug-in
$FMODE the octal mode associated with a file chmod, create, and mkdir

requests

$HOST the client’s host name

Esoteric oss Directives Configuration

86 11-April-2024 Configuration

$OFLAG A character sequence describing which file open processing

flags are in effect:
 a – O_APPEND t - O_TRUNC

 c – O_CREAT w – O_WRONLY | O_RDWR

 r – O_RDONLY x – O_EXCL

$TID the client’s trace identity

$USER the authenticated client’s name

$eVar any variable that has been passed along with the file name as

opaque information

Defaults

The default message is described in the following section.

Notes

1) Variables must begin with a $ (dollar sign) and end with a non-alpha-numeric

character.

2) To include a dollar sign into the message, escape it with a back slash (“\”).

3) A backslash escape is only recognized when followed by a dollar sign.

4) Important! The stagemsg msgline is not subject to general set variable

substitution.

5) Except for $CGI, the implicit value of a variable that has not been set is the

variable name itself, including the dollar sign.

6) For $CGI, if no opaque information is found, the variable is substituted with

the null string.

Example
 oss.stagemsg stage $LFN $PFN

Configuration Esoteric oss Directives

Configuration 11-April-2024 87

5.8.1 Default Stage Request Message (stagemsg)

The default2 message that is sent to the stagecmd’s stdin when a stage operation is

required has the following format:

+ requestid npath priority mode path [path [. . .]]

Where:

requestid is the request identifier that can be used to group this request into a

unique set of requests. The requestid is globally unique.

npath is the notification path to be used to indicate how the request complete.

This field may contain:

- no notification is to be sent.

mailto://user send e-mail to user

tcp://rhost:port/msg send msg via tcp to rhost:port

udp://rhost:port/msg send msg via udp to rhost:port

priority is the request’s priority as a number 0 through 9, inclusive. Zero is the

lowest priority, while 9 the highest.

mode is the processing mode and may contain a combination of the following

letters:

 f send fail notice (not affected by q flag)

 n send success notice

 q suppress default failure notice (i.e., quiet)

 r file is epected to be only read

 w allow the file to be modified

path is the absolute logical name of the file to be prepared. If more than one

path is specified, each path is separated by a blank.

2
 This message may be specified by using the stagemsg directive.

mailto:user

Esoteric oss Directives Configuration

88 11-April-2024 Configuration

Notes

1) If notification is requested, the command should adhere to the following

message format:

Successful: ready requestid msg path

Unsuccessful: unprep requested msg path

requestid is the request identifier associated with the completed request.

msg is the text that followed the notification url (see above). This

text is sent without inspection.

path is the absolute logical name of the file that successfully

prepared or whose preparation failed.

5.8.2 The Stage Cancel Message

The following message is sent to the stagecmd’s stdin to cancel a stage operation:

- requestid

Where:

requestid The request identifier used in a previous stage request. All entries with

this requestid should be removed.

Notes

1) You cannot change the format of a stage cancel request message.

5.8.3 The Stage Query Message

The following message is sent to the stagecmd’s stdin to cancel a stage operation:

?

Notes

1) The command should respond with a list of new-line separated paths

associated with queued requests.

2) You cannot change the format of a stage query request message.

Configuration Esoteric oss Directives

Configuration 11-April-2024 89

5.9 statlib

oss.statlib [options] path [parms]

options: [-arevents] [-non2n] [-preopen]

Function

Specify the location of the file system stat() function interface layer.

Parameters

-arevents

 Calls the plug-in when names are added or removed from the system. This

option only applies to the cmsd’s with server roles. Include file

XrdOssStatInfo.hh details the calling conventions.

-non2n

 Bypasses the name-to-name translation when calling the StatInfo() function

in the shared library.

-preopen

 The stat function in the library must be called prior to opening a file in

addition to being called whenever file state information is needed.

path The absolute path to the shared library that contains an implementation of the

stat() function interface that oss is to use to obtain file state information.

parms Optional parameters to be passed to the stat() object creation function.

Defaults

The kernel implementation of stat() is used.

Esoteric oss Directives Configuration

90 11-April-2024 Configuration

Notes

1) The stat() function interface is defined in XrdOssStatInfo.hh include file.

Refer to this file on how to create a custom stat() function.

2) The stat() interface is also used by clustering services.

3) The file XrdOssSIgpfsT.cc is contains an alternate implementation of the

stat() function and can serve as an example on how to implement a

custom function.

4) The –arevents option is intended to be used by configurations that

implement a constructed namespace (e.g. SSI). Such configurations may

need notification at the cmsd level when the companion xrootd has added

or removed an entry from the system’s namespace.

Example
 oss.statlib /opt/xrootd/lib/libXrdOssSIgpfsT.so

Configuration Esoteric oss Directives

Configuration 11-April-2024 91

5.10 trace

oss.trace [-]toption [[-]toption] [• • •]

toption: all | debug | open | opendir

Function

Enable tracing at the oss level.

Parameters

toption

Specifies the tracing level. One ore more options may be specified. The

specifications are cumulative and processed left to right. Each option may be

optionally prefixed by a minus sign to turn off the setting. Valid options are:

all selects all possible trace levels except debug

debug traces internal functions

open traces file open requests

opendir trace directory open requests

Defaults

ofs.trace -all.

Notes

1) Trace output is currently routed to standard error.

2) Tracing occurs at the physical file system level. Additional tracing is

available at the logical file system level using the ofs.trace directive.

3) Enabling tracing can seriously degrade overall performance. This directive

should only be used for debugging purposes.

Example
ofs.trace all -dir

Configuration Esoteric oss Directives

Configuration 11-April-2024 93

5.11 usage

oss.usage parms

parms: [nolog | log path [sync snum]] [qoutafile file]

Function

Specify the handling of usage information.

Parameters

nolog does not log any usage information.

log path
logs usage information in the directory identified by path.

sync snum

synchronizes the log path file media with memory based usage counters every

snum changes. Specify a number between 1 and 32767, inclusive. See the

usage notes about the default when log is specified.

quotafile file

indicates that quota information can be found in file.

Defaults
oss.usage nolog

Notes

1) The usage directive allows you to save usage information via the log

parameter across server restarts. Since the information becomes stable, it

can be used to enforce quotas.

2) When the log parameter is specified, usage information is always written

to actual media whenever it changes to maintain a high degree of

reliability (i.e. sync 1). This may impact performance under heavy file

creation loads. The sync parameter allows you to reduce the number of

times the usage information is synchronized with physical media. Since

usage information is always synchronized with physical media every

spacescan interval, the values are written to physical media even if

adjustments are not frequent; providing you some leeway.

Esoteric oss Directives Configuration

94 11-April-2024 Configuration

3) Even when usage information is written to physical media it may still drift

from the true value because of hardware and software failures. You can

always determine if the values are correct by running

frm_admin -c config [-n instance] audit usage

on the server in question. You can also correct the usage information on a

running system using the same command:

frm_admin -c config [-n instance] audit -fix usage

Adding the -force option bypasses the confirmation prompt. When usage

is corrected, the server updates its internal information within the

spacescan interval.

4) The quota file is automatically reprocessed should it change. A check for

changes is made every spacescan interval.

5) Currently, quotas are only reported via the extended attribute query

interface. Quotas are not enforced by xrootd or cmsd.

6) Use high reliability space for path and file; preferably solid state media.

Example
 oss.usage log /var/spool

Compressing Files oosquish

Configuration 11-April-2024 95

5.12 xfr

oss.xfr [options] [{thrds | *}]

options: [deny dt[s|m|h]] [fdir path] [keep kt[s|m|h]]

 [up]

Function

Specify dynamic staging characteristics.

Parameters

dt The time, after a failing stage request for file x, future stage requests for file x

check for the presence of a “.fail”file to determine whether or not to honor the

request. After the dt period, the staging request for file x is retried whether or

not a “.fail” file exists. The value may be suffixed by s, h, or m (the case is

immaterial) to indicate that seconds (the default), minutes, or hours are being

specified, respectively. A value of zero disables this processing so that the

presence of a “.fail” file always suppresses the staging of the file.

path The location of the shadow directory where “.fail” files are to be written. The

default is to write them along side (i.e. in the same directory) as the failing

file. The path must be less than or equal to 256 characters.

kt The amount of time a pending stage request should be remembered. During

this time, requests for the same file do not create additional entries in the pre-

stage queue. In other words, only one additional entry for the same file may

be added to the pre-stage queue each kt.

up allows client to specify staging priority via opaque information. By default,

client-specified staging priority is ignored.

thrds The number of threads to be devoted to staging operations. The value

effectively controls the number of staging operations that can occur at any

one time. This value is only meaningful for synchronous staging. Specify an

asterisk to use the default value.

oosquish Compressing Files

96 11-April-2024 Configuration

Defaults
oss.xfr deny 3h keep 20m 1

Notes

1) The oss first checks for the existence of a file whose name is the same as

the one being requested but with a suffix of ‘.fail’. Should such a file exist,

the staging operation is not tried and an error is returned to the client.

This effectively prevents staging loops.

2) Clients specify staging priority using the OPID “oss.sprty” with the file

name presented at open time. Refer to the “Specifying Opaque

Information” section in this reference for information on how to specify

opaque information.

3) The localroot value does not apply to the fdir path. You must specify and

existing real path.

Example
oss.xfr deny 1h fdir /tmp/ossfail/

Configuration Mass Storage System

Configuration 11-April-2024 97

6 Enabling Mult-Tiered Storage (MTS)

The oss includes Multi-Tiered Storage (MTS) support where files can reside locally

or remotely elsewhere (e.g., in a Mass Storage System or even some local but slow

device). Depending on the configuration, files can be automatically copied from

another location to local disk when they are opened.

By default, MTS support is not enabled. You enable this support using the stage

attribute on the oss.defaults or all.export directive. Other export attributes: check,

dread, migrate, and rcreate, as well as the oss.remotepath, oss.rsscmd, and

oss.stagecmd directives modify MTS behavior. The oss provides built-in MTS

support via the File Residency Manager (FRM) using frm_xfragent. To fully use this

mechanism, you need to configure and run frm_xfrd. Refer to the “File Residency

Manager Reference” for details. Alternatively, use the oss.stagecmd directive to

provide a custom implementation.

When MTS support is enabled, special files are created in the file system to

coordinate the staging files from an external location as well as migrating files to an

external location.

The oss layer allows the use of practically any remote storage system to provide

multi-tiered storage. The requirements are minimal and include:

 A Unix-like name space,

 a command to transfer data to and from the remote storage system, and

 a command to obtain meta-data about a file in the remote storage system if

you wish to provide real-time responsiveness.

There are only two steps for interfacing remote storage with the oss. These are:

 To provide a real-time interface, decide on the command to use to obtain

remotely maintained meta-data (e.g., file status and directory contents) as

well as perform meta-data oriented functions (e.g., remove, rename, etc.). The

rsscmd directive specifies the command. The arguments and expected

responses are documented in the configuration section for the directive.

 To provide a non-default remote storage service interface, decide on the

command to use to get a file from remote storage. The stagecmd directive

specifies the command. The arguments and expected responses are

documented in the configuration section for the directive.

Passing Hints Opaque Information

98 11-April-2024 Configuration

6.1 Special MTS Files

The oss component either creates or recognizes meta-files with special suffixes in the

name space. Consequently, these files cannot be used to hold data. The following

table lists these special files.

File Origin Purpose

fn.anew Created*! Used while importing fn from an external location.

fn.fail Created*! Controls future imports and exports of fn when a

previous such attempt failed. The file may contain

details about the failure.

fn.map --- Reserved for future use.
Special MTS Name Space Files

OPIDs Configuration

Configuration 11-April-2024 99

7 Opaque Information

This section describes the opaque information directives (OPIDs) recognized by the

ofs and oss layers. A client program creates the opaque information and appends it

to a path name used as the target of an open request. The information is opaque in

the sense that only the layer to which the information is targeted interprets the

information. All opaque information is structures in the same way, as follows:

path&layer.directive=arg[,arg[,···]][&layer.directive=···]

Where:

path The path passed as an argument to the kXR_Open request.

layer The layer to which the directive is sent. Valid layer names are:

ofs the logical file system layer

oss the physical storage system layer.

directive

The name of the specific directive. Directives are documented in the

following sections.

arg Directive-specific arguments.

Notes

1) Unrecognized layer names or directive names are ignored.

2) Currently, the ofs layer has no opaque directives.

3) Invalid values or arguments to a recognized directive normally result in

termination of the request.

4) An OPID consists of a value-directive instance. Any number of OPIDs

may be strung together. The OPID order is immaterial. However, the last

duplicate OPID always takes precedence.

Example
 &oss.cgroup=index&oss.asize=120000000

Configuration OPIDs

100 11-April-2024 Configuration

7.1 ofs OPIDs

7.1.1 lcl

&ofs.lcl=t

Function

Request that an action only occur on the local copy of a file.

Arguments

t Restricts file system operations to the local copy.

Defaults

Defaults are defined by the operation being requested which may involve

more than just the local copy the file.

Notes

1) Currently, the ofs.lcl OPID controls file deletion. When the OPID is

specified along with the file to be removed, only the local copy of the file

is removed. Remote copies (e.g., in a Mass Storage System), if any, are not

affected.

Example
 &ofs.lcl=t

OPIDs Configuration

Configuration 11-April-2024 101

7.1.2 posc

&ofs.posc=t

Function

Request POSC processing from the ofs layer for a new file.

Arguments

t Enables POSC processing for the associated file.

Defaults

Default processing mode is specified by the ofs.persist directive.

Notes

1) POSC processing may also be enabled by setting the kXR_posc option in

the kXR_open request.

2) Currently, POSC processing is enabled regardless of the value given in

the ofs.posc OPID. For future compatibility, you should always use the

single letter ‘t’ as the value to enable POSC processing.

Example
 &ofs.posc=t

Configuration OPIDs

102 11-April-2024 Configuration

7.2 oss OPIDs

7.2.1 asize

&oss.asize=bytes[k | m | g]

Function

Provide the oss layer the estimated allocation size for a new file.

Arguments

bytes The estimated number of bytes that a newly created database file will need.

The value may be suffixed by k, m, or g to scale num by 210, 220, or 230,

respectively.

Defaults

Default allocation for new databases is determined by the oss.alloc

configuration directive.

Notes

1) The alloc directive provides a hint to the server so that it can more

effectively perform space allocation. Like all hints, the server may choose

to ignore it.

Example
 &oss.assize=500m

OPIDs Configuration

Configuration 11-April-2024 103

7.2.2 cgroup

&oss.cgroup=spacename

Function

Specify the name of the space for a newly created file.

Arguments

spacename

the name of the space where the newly created file is to be placed.

Defaults
 &oss.cgroup=public

Notes

1) Named spaces allow files to be segregated from one another for arbitrary

reasons. Space are defined using the oss.space directive.

2) The cgroup OPID provides a hint to the server so that it can more

effectively perform space allocation. Like all hints, the server may choose

to ignore it.

3) The administrator defines what a particular space name means. For

instance, the name of the space may correspond to an SRM static space

token.

Example
 &oss.cgroup=fast

Configuration OPIDs

104 11-April-2024 Configuration

7.2.3 lcl

&oss.lcl=1

Function

Request that an action only occur on the local copy of a file.

Arguments

1 Restricts file system operations to the local copy.

Defaults

Defaults are defined by the operation being requested which may involve

more than just the local copy the file.

Notes

1) Currently, the oss.lcl OPID controls open and stat requests. When the

OPID is specified along with the file to be open or quried, only the local

copy of the file is considered. Remote copies (e.g., in a Mass Storage

System), if any, are not considered.

Example
 &ofs.lcl=t

OPIDs Configuration

Configuration 11-April-2024 105

7.2.4 sprty

&oss.sprty=priority

Function

Specify the staging priority should the database need to be staged to disk.

Arguments

priority

a value from 0 through 15; with 0 being the lowest priority and 15 being the

highest priority.

Defaults
&oss.sprty=1

Notes

1) The sprty OPID is ignored unless it is enabled via the up option of the

oss.xfr directive.

2) The specified priority is effective only relative to a policy driven system

priority. That is, should your request be assigned a system priority of 4,

then the sprty is only relative to other requests assigned the same system

priority.

3) The sprty directive provides a hint to the server so that it can more

effectively perform staging. Like all hints, the server may choose to ignore

it.

4) The valid range of staging priorities for the File Residency Manager range

from 0 (the lowest) to 2 (the highest).

Example
 &oss.sprty=3

OPIDs Configuration

Configuration 11-April-2024 107

8 Virtual Extended Attributes

The ofs and oss support extended attributes that may be obtained using the

getxattr() call available as part of the POSIX support included with xrootd. The

getxattr function syntax is:

ssize_t getxattr(const char *path, const char *name,

 void *value, size_t size);

Operating system man pages document the getxattr function. The specific name

attributes that are currently supported are:

Name Information Returned

xroot.space Space information relative to path and possible cgroup specification.

xroot.xattr Extended attributes associated with path.

For each name, information is returned as a cgi string; as described in the following

sections.

8.1 Information returned for xroot.space

 oss.cgroup=cgrp&oss.space=space&oss.free=free&oss.maxf=maxf

 &oss.used=used&oss.quota=quota

Values

cgrp the space name associated with path in the absence of a oss.cgroup

specification. When oss.cgroup is specified with path, the specification is

returned.

space total number of bytes accessible to cgrp.

free number of space bytes that are available for possible allocation.

maxf maximum number of contiguous free bytes available.

Configuration OPIDs

108 11-April-2024 Configuration

used number of bytes in use (i.e., allocated) by cgrp. See notes for caveats.

quota maximum number of bytes cgrp is allowed to have allocated. If the value is

negative, no quota applies.

Notes

1) If oss.cgroup is specified as opaque information with path, then

information is returned for the specified space. Otherwise, information is

returned relative to where path would have been allocated.

2) Information is returned without any breaks.

3) Since tokens may be returned in an arbitrary order, they should be parsed

relative to their cgi name.

 Configuration

Configuration 11-April-2024 109

8.2 Information returned for xroot.xattr

 oss.cgroup=cgrp&oss.type=type&oss.used=used&oss.mt=mt

 &oss.ct=ct&oss.ct=ct&oss.at=at&oss.u=usr&oss.g=grp

 &oss.fs=fs&ofs.ap=privs

Values

cgrp the space name associated with path If cgrp is an asterisk (*), then path is not

online and may exist in any space once it is retrieved from a Remote storage

system.

type type of path as a single letter:

 d – Directory f – File o – Other (not file or directory).

used size of the entry in bytes.

mt the entry’s Unix modification time.

ct the entry’s Unix state change time.

ct the entry’s Unix state change time.

usr the name of the entry’s owner. An asterisk indicates that the entry is owned

by the server.

grp the name of the entry’s Unix group. An asterisk indicates that the entry is

assigned to the server’s primary group.

fs the containing file system characteristics as a single letter:

 r – Read/Only file system w – Writable file system

Configuration

110 11-April-2024 Configuration

privs the requestor’s privileges relative to path as a sequence of single letter

privileges:
a - all privileges l - lookup a file (i.e., search directory)

d - delete (i.e., remove)a file n - rename a file

i - insert (i.e., create) a file r - read a file

k - lock a file (not used) w - write a file

Notes

1) The oss.cgroup, if specified, is ignored.

2) Information is returned without any breaks.

3) Since tokens may be returned in an arbitrary order, they should be parsed

relative to their cgi name.

Document Changes Configuration

Configuration 11-April-2024 111

9 Document Change History

23 Feb 2005

 Add the memfile, mkeep, mlock, and mmap directives.

 Add the mkeep, mlock, and mmap attributes to the path directive.

14 March 2005

 Remove documentation on local redirection mode.

1 June 2005

 Describe conditional directives.

 Deprecate the –r, –t, –y command line options.

12 Jan 2006

 Add the namelib directive.

22 Mar 2006

 Add exec condition to if/else/fi.

25 May 2006

 Deprecate the redirect directive.

 Document the authlib directive.

 Miscellaneous changes to accommodate centralized configuration for

clustering.

2 Oct 2006

 Add sync and async options to stage directive.

17 Jan 2007

 Document the defaults directive.

 Document the osslib directive.

 Deprecate all of the “[no]xxx” directives.

2 Apr 2007

 Deprecate mssgwcmd and path directives.

 Document the oss.msscmd directive (to replace oss.mssgwcmd).

 Document the all.export directive (to replace oss.path).

 Enhance documentation of oss.defaults.

 Move conditional directives to a separate manual.

 Document the stagemsg directive.

Configuration Document Changes

112 11-April-2024 Configuration

 Document oss.xfr keep option.

 Document that the LFN is the primary path name that is externally

passed to around.

8 Jan 2008

 Remove documentation on deprecated directives.

 Substitute a generic reference to clustering wherever olbd was

mentioned.

 General cleanup.

12 Mar 2008

 Document the usage directive.

17 Mar 2008

 Document the notifymsg directive.

 Document the xa option of the cache directive.

 Describe extended attributes.

7 Apr 2008

 Update the ofs.forward directive. Describe 1way, 2way, 3way modes

and the truncate operations.

 Add trunc to the notify and notifymsg directives.

2 Jun 2009

 Document POSC processing and the ofs.persist directive.

 Document the ofs.posc OPID.

12 Apr 2010

 Clarify the effects of check, dread, rcreate, and stage export attributes

on msscmd and stagemcmd directives.

22 Apr 2010

 Document the fact that the oss now has a built-in interface to the File

Residency Manager via frm_xfrd.

 Document the rsscmd directive as preferred over msscmd.

 Document the space directive.

 Deprecate the cache directive.

 Document that msscmd, rsscmd, and stagecmd no longer have any

effect on the default setting of migrate and stage export options.

 Better explain the side-effects of the nocheck export attribute.

Document Changes Configuration

Configuration 11-April-2024 113

 Document the purge export option.

 Simplify the xfr directive by adding the deny option and dropping

unused positional parameters.

 Document the ofs.lcl opaque ID.

 Remove completely check for undocumented options left secretly

behind for backward compatibility (e.g., mssgwcmd, mssgwpath,

gwbacklog, all single default options).

 Deprecate the oss.userprty directive by allowing the up option of

oss.xfr to do the same thing.

9 Dec 2010

 Correct the oss.memfile directive to indicate that it now uses file

extended attributes.

27 Dec 2010

 Describe how to setup proxy servers. This includes various directives

specific to such a setup as well as tuning options.

 Describe the netchk utility.

9 May 2011

 Document the pss.cache directive.

31 May 2011

 Document the ofs.ckslib and ofs.cksrdsz directives.

27 Sep 2011

 Document the stage+ option on the oss.defaults and all.export

directives.

 Remove documentation on deprecated oss.cache and oss.userprty

directives.

 Remove documentation about out MTS special files now encoded as

extended attributes.

 Remove description of compcheck and ssdec defaults/export

attributes, the compdetect directive and the oosquish command. None

of these are used nor fully implemented.

 Add description of the oss.lcl opaque identifier.

5 Oct 2011

 Clean-up the proxy section a bit more.

 Describe the pss.ckslib and pss.namelib directives.

Configuration Document Changes

114 11-April-2024 Configuration

8 Dec 2011

 Document how to specify the cluster management client interface

plug-in via the ofs.cmslib directive.

-------------- Release 3.1.1

2 Apr 2012

 Document the ofs.tpc directive.

24 Apr 2012

 Document the pss.origin directive more explicitly.

20 Jun 2012

 Document the new oss.xfr fdir option.

-------------- Release 3.3.6

15 Nov 2013

 Realign proxy directives and options to correspond to available

features in the new client.

8 Apr 2014

 Document the autorm, echo, and scan options of the ofs.tpc directive.

-------------- Release 4.0.0

17 Jun 2014

 Move proxy service documentation to a separate reference.

9 Jul 2014

 Document the oss.statlib directive.

24 Oct 2014

 Document the ofs.xattrlib directive.

 Document the +xattr option in the ofs.osslib directive.

12 Nov 2014

 Document the +cksio option in the ofs.osslib directive.

Document Changes Configuration

Configuration 11-April-2024 115

11 Oct 2015

 Document the -2 option in the ofs.statlib directive.

18 Oct 2015

 Document the non2n option in the ofs.statlib directive.

27 Oct 2017

 Further enhance the explanation of the scan option of ofs.tpc

directive.

10 Feb 2018

 Document the -arevents option in the ofs.statlib directive.

 Add leading dash to all ofs.statlib directive options for consistency.

23 May 2018

 Document the xattrs option in the oss.defaults and all.export

directives.

 Document the ofs.usxattr directive.

 Document the XRDOSSCSCAN environment variable in the

oss.cachescan directive.

19 June 2018

 Document the fcreds and fcpath options in the ofs.tpc directive.

 Document the enhanced streams option in the ofs.tpc directive.

 Add a section to describe using delegated credentials for third party

copy.

 Document the equals option in the ofs.ckslib directive.

24 August 2018

 Document the oss.space directive for assigning spaces to logical file

name paths.

1 February 2019

 Document the ofs.tpc redirect directive.

2 April 2019

 Document the ofs.persist sync option.

 Document the ofs.preplib directive.

Configuration Document Changes

116 11-April-2024 Configuration

8 May 2019

 Add a section better explaining the TPC script.

15 May 2019

 Document that the oss.localroot path must exist and be a directory for

default plug-ins.

 Documents the ofs.xattr directive.

18 October 2019

 Remove the +cksio option from the ofs.osslib directive (it’s the

default).

 Document the ++ option on the ofs.authlib, ofs.osslib, ofs.preplib, and

oss.xattrlib directives.

22 November 2019

 Provide an example on how the oss.space directive can be used.

17 March 2020

 Document the ofs.ctllib directive.

20 April 2020

 Remove the oss.statlib directive -2 option as it’s now automatically

handled. The option is still accepted for backward compatibility.

2 June 2020

 Document the cache attribute for the oss.defaults and all.export

directives.

 Document the ofs.dirlist directive.

16 June 2020

 Document the sync option for the oss.usage directive.

23 June 2020

 Document the oss.spacescan directive which replaces the

oss.cachescan directive.

 Remove references to the oss.cachescan directive as well as the

oss.cache directive, the latter is no longer supported.

12 October 2020

 Document the ofs.chkpnt directive.

Document Changes Configuration

Configuration 11-April-2024 117

20 November 2020

 Re-document the +cksio option on the ofs.osslib directive.

5 April 2021

 Document the ++ option on the ofs.ckslib directive.

25 June 2021

 Document the chkmount option on the oss.space directive.

30 July 2021

 Document crc32c as a natively supported checksum.

8 December 2021

 Document the generic prepare plug-in, libXrdOfsPrepGPI.so.

12 October 2022

 Document the ofs.crmode directive.

2 June 2023

 Document the -maxresp option for the generic prepare plug-in.

11 April 2024

 Correct the documentation of the ofs.dirlist directive.

