
Data & Storage Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

DSS

The new XRootD client

Łukasz Janyst

IT-DSS Group Meeting
Geneva, 02.03.2012

1



Data & 
Storage 
Services Outline

•High orbit flight over the XRootD protocol
•Key points of the implementation
•Issues
•Status
•What’s next?

2



Data & 
Storage 
Services Message types

• Stateless vs. Stateful
– Stateless: request-response (mkdir, rm, query...)
– Stateful: open-do stuff-close (read, write, readv...)
– The main difference in the error recovery:

• retry or just go and ask elsewhere
• vs. reestablish the state, possibly on another machine, and retry 

(not always possible)

• Solicited vs. Unsolicited
– Responses to requests (ping-pong, classical client-server 

system)
– Messages that have not been requested but affect 

operation (go away!, don’t bother me until further notice, 
from now on start asking this other guy) 

3



Data & 
Storage 
Services Responses

• The server may respond to a request or just talk 
unasked:
– kXR_attn - unsolicited server info
– kXR_ok - the query succeeded and this is the answer
– kXR_error - failure
– kXR_oksofar - kind of okay, some part of the response 

arrived, but problems still may occur
– kXR_redirect - go and ask this other guy (if the request 

was stateful, the state needs to be re-established)
– kXR_wait - busy, bother me again in n seconds
– kXR_waitresp - the answer is not available now, will be 

sent in around n seconds as an unsolicited message

4



Data & 
Storage 
Services Message Handling

• Many messages may be sent over one socket 
without waiting for a response and responses may 
arrive in any order
– each request has a stream identifier field assigned by the 

client which is echoed in the response, so that the 
responses may be associated with the requests

• Responses to some messages may be sent over 
other sockets associated with the same session
– data-heavy messages: reads and writes
– to optimize TCP congestion avoidance/window/slow-

restart issues

5



Data & 
Storage 
Services New implementation-features

• Fully asynchronous
– stateless requests may be handled asynchronously, not 

only reads and writes
• listing of huge directories an order of magnitude faster
• and, probably, heavier for the server to handle :(

– callback model instead of request-and-poll-the-cache 
model

– no need to have a cache to handle async communication
– synchronous requests implemented in terms of 

asynchronous (with a semaphore)
• Thread safe

– the user API classes hold very little or no mutable state at 
all

6



Data & 
Storage 
Services New implementation-features

• Lighter
– one extra thread to handle socket events
– one extra thread to handle time events
– no need to spawn extra thread for every new connection
– uses host system optimized polling (through libevent) 

instead of block+timeout model, which should reduce 
number of syscalls

7



Data & 
Storage 
Services User classes

• XrdClient::Query for stateless requests
– mkdir, rmdir, query, locate, move truncate, chmod, ping, 

stat...

• XrdClient::File for (stateful) file operations
– read, write, readv...

8



Data & 
Storage 
Services Architecture

FileFileFileFile

QueryQueryQueryQuery

Post
Master

Channel

Channel

Channel

Transport handler

Message handler

• File and Query objects
– the user API entry points, they build and send the 

requests using a PostMaster object
– hold as little mutable state as possible
– register message handlers to interpret the incoming 

messages
9



Data & 
Storage 
Services Architecture

FileFileFileFile

QueryQueryQueryQuery

Post
Master

Channel

Channel

Channel

Transport handler

Message handler

• Message handlers
– receive the notification of incoming messages from the 

PostMaster
– handle waiting, redirection, glueing partial responses, 

building response objects, notifying users about final 
results

10



Data & 
Storage 
Services Architecture

FileFileFileFile

QueryQueryQueryQuery

Post
Master

Channel

Channel

Channel

Transport handler

Message handler

• Post Master
– protocol independent (may be used for any message-

based protocol over a TCP)
– manages physical channels and streams to the servers
– sends messages to given URLs

11



Data & 
Storage 
Services Architecture

FileFileFileFile

QueryQueryQueryQuery

Post
Master

Channel

Channel

Channel

Transport handler

Message handler

• Post Master
– Manages message handler subscriptions to channels
– Notifies the handler of incoming messages

12



Data & 
Storage 
Services Architecture

FileFileFileFile

QueryQueryQueryQuery

Post
Master

Channel

Channel

Channel

Transport handler

Message handler

• Transport handler
– entity within the post master responsible for handling 

specific protocol
– assigned to a channel after interpreting the protocol part 

of the URL (root://, xroot://, whatever)

13



Data & 
Storage 
Services Architecture

FileFileFileFile

QueryQueryQueryQuery

Post
Master

Channel

Channel

Channel

Transport handler

Message handler

• Transport handler
– Handles logging-in and authentications
– Stream and message multiplexing
– Extracting messges from the stream TCP socket
– Message marshalling and un-marshalling

14



Data & 
Storage 
Services PostMaster vs. SCTP

• Stream Control Transmission Protocol
– a transport layer protocol
– message oriented (like UDP)
– reliable & congestion-aware (like TCP)
– supports multi-streaming
– implemented in Linux and Solaris > 10

• PostMaster could be dramatically simplified if we 
used SCTP instead of TCP

• To be investigated

15



Data & 
Storage 
Services Issues

• Sometimes not really clear how to deal with 
timeouts
– What if the link is fine but servers tells us to wait longer 

than we want to?
• Recovery scenarios for complex (federated) setups.

– Which manager to go to after encountering certain kinds 
of errors? Which errors should be revered in the local 
cluster and which on the federation level?

• How to handle write errors & redirections?
– Start from the middle of a file on another server?

16



Data & 
Storage 
Services Issues

• Minor protocol issues discovered (easily fixable)
• Using libevent may be a deployment issue

– Linux distros commonly provide 1.x but 2.x is required by 
the client.

• Code licensing, CERN’s preference is (L)GPL, US 
Department of Energy prefers BSD.

• All of these to be discussed with the rest of the 
collaboration.

17



Data & 
Storage 
Services Status

• Stateful and stateless user API for most of the 
requests defined by the protocol: DONE

• xrdquery utility (replacing xrd): DONE
• xrdcopy utility (replacing xrdcp): IN PROGRESS 
• Unit tests: DONE
• Doxygen API documentation: DONE
• Total line count: 17274 and growing (including 

comments and tests)

18



Data & 
Storage 
Services Next steps

• Caching & prefetching support
– probably use one of existing solutions

• ROOT plugin (replacing current TXNetFile)
• IPv6 - the protocol is IPv6 aware, the 

implementation not necessarily
• Test, test, test, test, test & iron-out the rough edges

– use internally in EOS
– planned to use in CASTOR when migrating to pure 

XRootD internal data transfers

19



Data & 
Storage 
Services Questions

Thanks for your attention!

Questions? Comments?

20


