Department

Data & Storage Services T

XRootD client plug-ins

t ukasz Janyst

CERNIT Department & XRootD IT-DSS R&D meeting

Switzerland
www.cern.ch/it

Geneva, 03.02.2014

Dat . CERN
o Outline T

Serwces Department

« XrdCl and its API stack

* The plug-in mechanism:

— Where?

— What?

— How?

— Why?/What for?
— When?

S5 XrdCl AP stack & neighbours ~ “™IT

Serwces Department

m . XRootD - core
B XRootD

CopyProcess - ROOT J CMSSW
PostMaster

S5 XrdCl AP stack & neighbours ~ “™IT

Serwces Department
. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

PostMaster

- PostMaster - low-level message handling API

— sends messages

— asynchronous - notifies message handlers about sent/
Incoming messages

— notifies about stream status changes (disconnections)

S5 XrdCl AP stack & neighbours ~ “™IT

Serwces Department
. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

PostMaster

* File/FileSystem - implement XRootD operations
— user-facing C++ API
— does reads, writes, mkdirs, listings, staging and the like
— asynchronous - call back when response is read

S5 XrdCl AP stack & neighbours ~ “™IT

Serwces Department
. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

PostMaster

CopyProcess - implement copy operations
— user-facing C++ API, a library call

— take source/target URLs, couple more parameters and do
the magic

— notify periodically about progress using a call-back

S5 XrdCl AP stack & neighbours ~ “™IT

Serwces Department

. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

PostMaster

* xrdcopy - the copy command
— translate command line parameters to CopyProcess calls

» xrdfs - the mata-data command
— translate command line parameters to FileSystem calls

Serwces Department
. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

S5 XrdCl AP stack & neighbours ~ “™IT

PostMaster

 PyXRootD - make the user APls available in Python

— all APls user APls available: File, FileSystem and
CopyProcess

— uses Python callables to handle call-backs

S5 XrdCl AP stack & neighbours ~ “™IT

Serwces Department
. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

PostMaster

* Neighbours - all the purple boxes above and quite
a bit more that did not fit the diagram

— EOS uses a bit of everything
— significant number of packages use XrdPosix interface

*g‘a/tag - XrdCl plug-ins T

Serwces Department

* Plug-ins - replace the original implementation
— both for File and FileSystem objects
— all calls can be replaced

— all the layers above can benefit without changing a single
line of code

10

S XrdCl user AP iy

Serwces d Department

All xroot protocol requests are implemented as
asynchronous methods

The calls queue the request and return, never
block

XRootDStatus File::0pen(const std::string &url,
OpenFlags: :Flags flags,
Access: :Mode mode,
ResponseHandler *handler,
uintl6 t timeout)

The response handler is called when the response
IS ready

Synchronous versions implemented in terms of
asynchronous ones, with a semaphore

S5 XrdCl plug-in AP T

Serwces Department

The plug-in API is exactly the same - except for the
virtual keyword

Only asynchronous calls may be overloaded

virtual

XRootDStatus File::0Open(const std::string &url,
OpenFlags::Flags flags,
Access: :Mode mode,
ResponseHandler *handler,
uintlé t timeout)

;g[a/ta/&/ : CERN| T
age Plug-in Manager

Services Department

* Process plug-in environment configuration
— covered later in the presentation

- Manage a map between URLs and plug-in factories:
— le. root://eosatlas.cern.ch:1094 D> XrdEosFactory

— factories are objects that instantiate plug-ins (think of: new
XrdEosFile) given URLs

root://eosatlas.cern.ch:1094

< -

Data &
»s@aaﬁe Flow CERN|T

Services | Department

 File object creation (constructor)

— ask the plug-in manager whether a plug-in for a given
URL is known

— if so, install the plug-in

* File object usage (method calls)
— call the plug-in if it is installed
— call the normal XRootD code if there is no plug-in present

Strage - Deployment - config files =T

Services Department

]==> cat eos.conf
example configuration

= eosatlas.cern.ch;eoscms.cern.ch
lib = /usr/1ib64/libXrdEosClient.so
enable = true

* The plug-ins are discovered and configured by
scanning configuration files

» There is one config file per plug-in
* It's a set of key value pairs

o

Storage - Deployment - search paths T

Services Department

* The plug-in manager will search for global
configuration files in:

/etc/xrootd/client.plugins.d/

Storage - Deployment - search paths T

Services Department

* The plug-in manager will search for global
configuration files in:

/etc/xrootd/client.plugins.d/

* The global settings may be overridden by
configuration files found in:

~/ .xrootd/client.plugins.d/

Storage Deployment - search paths T

Services | Department

* The plug-in manager will search for global
configuration files in:

/etc/xrootd/client.plugins.d/

* The global settings may be overridden by
configuration files found in:

~/ .xrootd/client.plugins.d/

* Any of the previous settings may be overridden by
configuration files found in a directory pointed to by:

XRD_PLUGINCONFDIR

;g%tg&e/ : : CERN| T
%, Plug-in packaging D —

Services

* Plug-ins may be developed and distributed
independently of the XRootD code

* The plug-in manager performs strict interface
version checking
— will refuse to load ABI incompatible plug-ins

* Plug-in package (RPM) needs to contain:

— the plug-in shared library
— a config file in /etc/xrootd/client.plugins.d/

siwe EOS Erasure Coding - now =

Services Department

Stripe servers Gateway

Primary motivation for the plugin

The client needs to see the file as a whole

File reconstruction needs to be done at a gateway
CPU and bandwidth scalability issues

Strege - EOS Erasure Coding - 4.0.0 =T

Services Department

Stripe servers

When contacting EOS the client is able to execute
specialised code

Can contact the stripe servers directly
Can reconstruct the data at the client machine
Transparently to the user - whatever he is!

;g[a/"@&/ o i CERN|T
orage SPASSIPI|tIES

Services | Department

* The plug-in writer can re-implement all the File and
FileSystem calls, so all sorts of things can be done:
— access files using other protocols (http://, ceph://, ...)

— opening multiple files at the same time and doing CMS-
style client-side dynamic load balancing (ie. in the
federation context)

— handle cross protocol redirections
— endless possibilities

- Enable the community to tinker, exactly what made
the XRootD server successful

* And all this transparent to the layers above!

a5

gl%@&/ : : CERN| T
orage ymaline

Services Department

* Fully functional
* Available for testing in XRootD GitHub repo master

branch
* Wil be released with XRootD 4.0.0

-

2[@@&/ : CERN| T
orage (O ONCclusion

Services | Department

* The plug-ins are:
— flexible - override all possible calls, do whatever you
want

— independent - development and deployment may be
completely detached from XRootD core

— ready to test in the master branch

— give a possibility to freely experiment and then
Incorporate new things into the core package

g{@a&/ CERN[T
~Storage FRAKS!

Services Department

Thanks for your attention!

Questions? Comments?

