
Data & Storage Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

DSS

XRootD client plug-ins

Łukasz Janyst

IT-DSS R&D meeting
Geneva, 03.02.2014

Data &
Storage
Services Outline

• XrdCl and its API stack
!

• The plug-in mechanism:
– Where?
– What?
– How?
– Why?/What for?
– When?

"2

Data &
Storage
Services XrdCl API stack & neighbours

"3

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena
XRootD - core

XRootD

External

Data &
Storage
Services XrdCl API stack & neighbours

"4

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• PostMaster - low-level message handling API
– sends messages
– asynchronous - notifies message handlers about sent/

incoming messages
– notifies about stream status changes (disconnections)

XRootD - core

XRootD

External

Data &
Storage
Services XrdCl API stack & neighbours

"5

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• File/FileSystem - implement XRootD operations
– user-facing C++ API
– does reads, writes, mkdirs, listings, staging and the like
– asynchronous - call back when response is read

XRootD - core

XRootD

External

Data &
Storage
Services XrdCl API stack & neighbours

"6

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• CopyProcess - implement copy operations
– user-facing C++ API, a library call
– take source/target URLs, couple more parameters and do

the magic
– notify periodically about progress using a call-back

XRootD - core

XRootD

External

Data &
Storage
Services XrdCl API stack & neighbours

"7

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• xrdcopy - the copy command
– translate command line parameters to CopyProcess calls

• xrdfs - the mata-data command
– translate command line parameters to FileSystem calls

XRootD - core

XRootD

External

Data &
Storage
Services XrdCl API stack & neighbours

"8

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• PyXRootD - make the user APIs available in Python
– all APIs user APIs available: File, FileSystem and

CopyProcess
– uses Python callables to handle call-backs

XRootD - core

XRootD

External

Data &
Storage
Services XrdCl API stack & neighbours

"9

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• Neighbours - all the purple boxes above and quite
a bit more that did not fit the diagram
– EOS uses a bit of everything
– significant number of packages use XrdPosix interface

XRootD - core

XRootD

External

Data &
Storage
Services XrdCl plug-ins

"10

PostMaster

FileFileSystem PROOF*

CopyProcess PyXRootD ROOT CMSSW

GaudiDiracFTS3xrdcopy

xrdfs

Athena

• Plug-ins - replace the original implementation
– both for File and FileSystem objects
– all calls can be replaced
– all the layers above can benefit without changing a single

line of code

XRootD - core

XRootD

External

Data &
Storage
Services XrdCl user API

• All xroot protocol requests are implemented as
asynchronous methods

• The calls queue the request and return, never
block

"11

 XRootDStatus File::Open(const std::string &url,!
 OpenFlags::Flags flags,!
 Access::Mode mode,!
 ResponseHandler *handler,!
 uint16_t timeout)!

• The response handler is called when the response
is ready

• Synchronous versions implemented in terms of
asynchronous ones, with a semaphore

Data &
Storage
Services XrdCl plug-in API

• The plug-in API is exactly the same - except for the
virtual keyword

• Only asynchronous calls may be overloaded

"12

 virtual!
 XRootDStatus File::Open(const std::string &url,!
 OpenFlags::Flags flags,!
 Access::Mode mode,!
 ResponseHandler *handler,!
 uint16_t timeout)!

Data &
Storage
Services Plug-in Manager

• Process plug-in environment configuration
– covered later in the presentation
!

• Manage a map between URLs and plug-in factories:
– ie. root://eosatlas.cern.ch:1094 ▹ XrdEosFactory
– factories are objects that instantiate plug-ins (think of: new	

XrdEosFile) given URLs

"13

root://eosatlas.cern.ch:1094

Data &
Storage
Services Flow

• File object creation (constructor)
– ask the plug-in manager whether a plug-in for a given

URL is known
– if so, install the plug-in
!

• File object usage (method calls)
– call the plug-in if it is installed
– call the normal XRootD code if there is no plug-in present

"14

Data &
Storage
Services Deployment - config files

• The plug-ins are discovered and configured by
scanning configuration files

• There is one config file per plug-in
• It’s a set of key value pairs

"15

]==> cat eos.conf !
 # example configuration!
!
 url = eosatlas.cern.ch;eoscms.cern.ch!
 lib = /usr/lib64/libXrdEosClient.so!
 enable = true

Data &
Storage
Services Deployment - search paths

• The plug-in manager will search for global
configuration files in:

"16

/etc/xrootd/client.plugins.d/

Data &
Storage
Services Deployment - search paths

• The plug-in manager will search for global
configuration files in:

"17

/etc/xrootd/client.plugins.d/

• The global settings may be overridden by
configuration files found in:

~/.xrootd/client.plugins.d/

Data &
Storage
Services Deployment - search paths

• The plug-in manager will search for global
configuration files in:

"18

/etc/xrootd/client.plugins.d/

• The global settings may be overridden by
configuration files found in:

~/.xrootd/client.plugins.d/

• Any of the previous settings may be overridden by
configuration files found in a directory pointed to by:

XRD_PLUGINCONFDIR

Data &
Storage
Services Plug-in packaging

• Plug-ins may be developed and distributed
independently of the XRootD code
!

• The plug-in manager performs strict interface
version checking
– will refuse to load ABI incompatible plug-ins
!

• Plug-in package (RPM) needs to contain:
– the plug-in shared library
– a config file in /etc/xrootd/client.plugins.d/

"19

Data &
Storage
Services EOS Erasure Coding - now

• Primary motivation for the plugin
• The client needs to see the file as a whole
• File reconstruction needs to be done at a gateway
• CPU and bandwidth scalability issues

"20

Stripe servers Gateway User

Data &
Storage
Services EOS Erasure Coding - 4.0.0

• When contacting EOS the client is able to execute
specialised code

• Can contact the stripe servers directly
• Can reconstruct the data at the client machine
• Transparently to the user - whatever he is!

"21

Stripe servers User

Data &
Storage
Services Possibilities

• The plug-in writer can re-implement all the File and
FileSystem calls, so all sorts of things can be done:
– access files using other protocols (http://, ceph://, …)
– opening multiple files at the same time and doing CMS-

style client-side dynamic load balancing (ie. in the
federation context)

– handle cross protocol redirections
– endless possibilities
!

• Enable the community to tinker, exactly what made
the XRootD server successful

• And all this transparent to the layers above!
"22

Data &
Storage
Services Timeline

• Fully functional
• Available for testing in XRootD GitHub repo master

branch
• Will be released with XRootD 4.0.0

"23

Data &
Storage
Services Conclusion

• The plug-ins are:
– flexible - override all possible calls, do whatever you

want
– independent - development and deployment may be

completely detached from XRootD core
– ready to test in the master branch
– give a possibility to freely experiment and then

incorporate new things into the core package

"24

Data &
Storage
Services Thanks!

"25

Thanks for your attention!
!

Questions? Comments?

